A conducting bar of mass m = 18.0 g and resistance R = 1.89 N slides down two conducting rails that are frictionless and have no electrical resistance. These rails make an angle 0 = 40.0° with the horizontal and are separated by a distance l = 20.0 cm, as shown. In addition, a uniform magnetic field B = 712 mT is applied vertically upward. The bar is released from rest and slides down. R in (b) As the bar continues to slide, the forces approach equilibrium. What is the induced current in the bar when it is moving at 85.0% of terminal speed? a

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter12: Sources Of Magnetic Fields
Section: Chapter Questions
Problem 25P: A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in...
icon
Related questions
Question

Please just answer this question: Qualitatively discuss what effect considering the resistance of the conducting rails would have on your estimate of terminal velocity. Make sure to consider that as the rod slides,the overall resistance of the circuit increases as a function of that distance slid. Do you think this would lead to a larger or smaller terminal velocity than the one you calculated in part (b)?

(Note if it helps: I calculated an induced current of 0.049A for part b).

A conducting bar of mass m = 18.0 g and resistance R = 1.89 N slides down two conducting rails
that are frictionless and have no electrical resistance. These rails make an angle 0 = 40.0° with the
horizontal and are separated by a distance l = 20.0 cm, as shown. In addition, a uniform magnetic
field B = 712 mT is applied vertically upward. The bar is released from rest and slides down.
R
in
(b) As the bar continues to slide, the forces approach
equilibrium. What is the induced current in the bar
when it is moving at 85.0% of terminal speed?
B
a
0 (
Transcribed Image Text:A conducting bar of mass m = 18.0 g and resistance R = 1.89 N slides down two conducting rails that are frictionless and have no electrical resistance. These rails make an angle 0 = 40.0° with the horizontal and are separated by a distance l = 20.0 cm, as shown. In addition, a uniform magnetic field B = 712 mT is applied vertically upward. The bar is released from rest and slides down. R in (b) As the bar continues to slide, the forces approach equilibrium. What is the induced current in the bar when it is moving at 85.0% of terminal speed? B a 0 (
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Laws of electromagnetic induction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning