A cube of mass m = 0.16 kg is set against a spring with a spring constant of k1 = 599 N/m which has been compressed by a distance of 0.1 m. Some distance in front of it, along a frictionless surface, is another spring with a spring constant of k2 = 252 N/m. The cube is not connected to the first spring and may slide freely. a.) How far, d2, in meters, will the second spring compress when the cube runs into it? b.) How fast, v2 in meters per second, will the cube be moving when it strikes the second spring? c.) Now assume that the surface is rough (that is not frictionless). You perform the experiment and observe that the second spring only compress a distance d2/2. How much energy in Joules was lost to friction?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter9: Energy In Nonisolated Systems
Section: Chapter Questions
Problem 83PQ: A spring-loaded toy gun is aimed vertically and fired after a spherical projectile of mass m = 30.0...
icon
Related questions
Question

A cube of mass m = 0.16 kg is set against a spring with a spring constant of k1 = 599 N/m which has been compressed by a distance of 0.1 m. Some distance in front of it, along a frictionless surface, is another spring with a spring constant of k2 = 252 N/m. The cube is not connected to the first spring and may slide freely.

a.) How far, d2, in meters, will the second spring compress when the cube runs into it?

b.) How fast, v2 in meters per second, will the cube be moving when it strikes the second spring?

c.) Now assume that the surface is rough (that is not frictionless). You perform the experiment and observe that the second spring only compress a distance d2/2. How much energy in Joules was lost to friction?

Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Collisions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning