A falling package with a parachute is greatly affected by air resistance. Suppose a package (m = 25 kg), dropped from an altitude of y = 1500 m, hits the ground at a speed of v = 45 m/s. Calculate the work done by air resistance. By conservation of energy, the initial total mechanical energy is equal to the final total mechanical energy. Let K be the kinetic energy, U be the gravitational potential energy, and Wair be the work done by the drag force from air resistance. E1 = E2 K1 + U1 + Wair = K2 + U2 Some of the terms in the equation above are zero so it can be simplified to: + Wair = Isolating the work done by air resistance, we get: Wair = ½ - m Plugging in the values given, the work done by air resistance is: Wair = 2.19 kJ

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter8: Potential Energy And Conservation Of Energy
Section: Chapter Questions
Problem 81AP: Repeat the preceding problem, but this time, suppose that the work done by air resistance cannot be...
icon
Related questions
icon
Concept explainers
Topic Video
Question

Kindly add label and box for the final answer based on the given problem. Thank you. 

A falling package with a parachute is greatly affected by air resistance. Suppose a package (m = 25 kg), dropped from an altitude of y = 1500 m, hits the ground at a speed of v = 45 m/s. Calculate
the work done by air resistance.
By conservation of energy, the initial total mechanical energy is equal to the final total mechanical energy. Let K be the kinetic energy, U be the gravitational potential energy, and Wair be the work
done by the drag force from air resistance
E1 = E2
K1 + U1 + Wair = K2 + U2
Some of the terms in the equation above are zero so it can be simplified to:
+ Wair =
Isolating the work done by air resistance, we get:
Wair = %
- m
Plugging in the values given, the work done by air resistance is:
Wair =
2.19 kJ
Transcribed Image Text:A falling package with a parachute is greatly affected by air resistance. Suppose a package (m = 25 kg), dropped from an altitude of y = 1500 m, hits the ground at a speed of v = 45 m/s. Calculate the work done by air resistance. By conservation of energy, the initial total mechanical energy is equal to the final total mechanical energy. Let K be the kinetic energy, U be the gravitational potential energy, and Wair be the work done by the drag force from air resistance E1 = E2 K1 + U1 + Wair = K2 + U2 Some of the terms in the equation above are zero so it can be simplified to: + Wair = Isolating the work done by air resistance, we get: Wair = % - m Plugging in the values given, the work done by air resistance is: Wair = 2.19 kJ
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning