(a)  Find the radius and height of a cylindrical soda can with a volume of 354 cm3 that minimizes the surface area.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
Chapter9: Surfaces And Solids
Section9.3: Cylinders And Cones
Problem 40E: For a right circular cone, the dimensions are r=6 cm and h=8 cm. If the length of the radius is...
icon
Related questions
icon
Concept explainers
Question

 (a)  Find the radius and height of a cylindrical soda can with a volume of 354 cm3 that minimizes the surface area. 

     (b)  Use the fact that real soda cans have a double thickness in their top and bottom surfaces to find the radius and height that minimize the surface area of a real can (the surface areas of the top and bottom are now twice their values in part (a)).  

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Functions and Change: A Modeling Approach to Coll…
Functions and Change: A Modeling Approach to Coll…
Algebra
ISBN:
9781337111348
Author:
Bruce Crauder, Benny Evans, Alan Noell
Publisher:
Cengage Learning
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning