A gas turbine unit consists of a compressor, heat exchanger, combustion chamber and turbine. The compressor and turbine are connected with a shaft. The unit operates between pressure limits of 100kPa and 625kPa. The cycle temperatures are: 28°C at compressor inlet, 625°C at the turbine inlet and 375°C at the turbine exhaust. The isentropic efficiency of the compressor is 85% and the effectiveness of the heat exchanger is 85%. If the net power is 1.5MW, calculate: (a). the temperature at compressor delivery (b). the isentropic efficiency of the turbine (c). the thermal efficiency of the cycle

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A gas turbine unit consists of a compressor, heat exchanger, combustion
chamber and turbine. The compressor and turbine are connected with a shaft.
The unit operates between pressure limits of 100kPa and 625kPa.
The cycle temperatures are: 28°C at compressor inlet, 625°C at the turbine
inlet and 375°C at the turbine exhaust. The isentropic efficiency of the
compressor is 85% and the effectiveness of the heat exchanger is 85%. If the
net power is 1.5MW, calculate:
(a). the temperature at compressor delivery
(b). the isentropic efficiency of the turbine
(c). the thermal efficiency of the cycle
(d). the air-fuel ratio
(e). the specific fuel consumption
(f). the daily fuel consumption at the given power.
Transcribed Image Text:A gas turbine unit consists of a compressor, heat exchanger, combustion chamber and turbine. The compressor and turbine are connected with a shaft. The unit operates between pressure limits of 100kPa and 625kPa. The cycle temperatures are: 28°C at compressor inlet, 625°C at the turbine inlet and 375°C at the turbine exhaust. The isentropic efficiency of the compressor is 85% and the effectiveness of the heat exchanger is 85%. If the net power is 1.5MW, calculate: (a). the temperature at compressor delivery (b). the isentropic efficiency of the turbine (c). the thermal efficiency of the cycle (d). the air-fuel ratio (e). the specific fuel consumption (f). the daily fuel consumption at the given power.
Expert Solution
steps

Step by step

Solved in 6 steps with 1 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY