A (nonconstant) harmonic function takes its maximum value and its minimum value on the boundary of any region (not at an interior point). Thus, for example, the electrostatic potential V in a region containing no free charge takes on its largest and smallest values on the boundary of the region; similarly, the temperature T of a body containing no sources of heat takes its largest and smallest values on the surface of the body. Prove this fact (for two-dimensional regions) as follows: Suppose that it is claimed that u(x, y) takes its maximum value at some interior point a; this means that, at all points of some small disk about a, the values of u(x, y) are nolarger than at a. Show by Problem 36 that such a claim leads to a contradiction (unless u = const.). Similarly prove that u(x, y) cannot take its minimum value at an interior point.

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter7: Hamilton's Principle-lagrangian And Hamiltonian Dynamics
Section: Chapter Questions
Problem 7.8P
icon
Related questions
Question

A (nonconstant) harmonic function takes its maximum value and its minimum value on the boundary of any region (not at an interior point). Thus, for example, the electrostatic potential V in a region containing no free charge takes on its largest and smallest values on the boundary of the region; similarly, the temperature T of a body containing no sources of heat takes its largest and smallest values on the surface of the body. Prove this fact (for two-dimensional regions) as follows: Suppose that it is claimed that u(x, y) takes its maximum value at some interior point a; this means that, at all points of some small disk about a, the values of u(x, y) are no
larger than at a. Show by Problem 36 that such a claim leads to a contradiction (unless u = const.). Similarly prove that u(x, y) cannot take its minimum value at an interior point.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Gibbs free Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning