A pump draws 20 kW of electrical power while pumping oil with a density of 780 kg/m^3 at a flow rate of 0.3 m^3/s. The diameters of the inlet and outlet pipes of the pump are 7 cm and 12 cm, respectively. Since the pressure increase in the pump is 220 kPa and the motor efficiency is 91%, determine the mechanical efficiency of the pump. (Ignore the kinetic energy correction factor, α=1, Ignore the height differences inside the pump, the head loss in the pump hL=0.5

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.37P
icon
Related questions
Question
A pump draws 20 kW of electrical power while pumping oil with a density of 780 kg/m^3 at a flow rate of 0.3 m^3/s. The diameters of the inlet and outlet pipes of the pump are 7 cm and 12 cm, respectively. Since the pressure increase in the pump is 220 kPa and the motor efficiency is 91%, determine the mechanical efficiency of the pump. (Ignore the kinetic energy correction factor, α=1, Ignore the height differences inside the pump, the head loss in the pump hL=0.5)
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning