A skateboarder shoots off a ramp with a velocity of 7.9 m/s, directed at an angle of 51° above the horizontal. The end of the ramp is 1.4 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When the skateboarder reaches the highest point, how far is this point horizontally from the end of the ramp? (a) Number_____  Units_____                                                             (b) Number ____  Units ____

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter2: Newtonian Mechanics-single Particle
Section: Chapter Questions
Problem 2.3P: If a projectile is fired from the origin of the coordinate system with an initial velocity υ0 and in...
icon
Related questions
icon
Concept explainers
Topic Video
Question
100%

A skateboarder shoots off a ramp with a velocity of 7.9 m/s, directed at an angle of 51° above the horizontal. The end of the ramp is 1.4 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When the skateboarder reaches the highest point, how far is this point horizontally from the end of the ramp?

(a) Number_____  Units_____                                                            

(b) Number ____  Units ____

Expert Solution
Step 1

Given Information:-

Initial speed of the skateboarder is v0=7.9 m/s

Angle θ=51°

Height of the highest point of the ramp from the ground is h0=1.4 m

 

Required:-

We have to calculate height of the highest point reached by the skateboarder and horizontal distance of the highest point from the end of the ramp.

 

Formula:-

We will use the following kinematic equations

vf=vi+at

d=vit+12at2

  vi, vf are initial and final speeds respectively,  a is the acceleration , d is the distance and t is the time.

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Projectile motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning