A space station is constructed in the shape of a wheel 20 m in diameter, with essentially all of its 5.2×105 kg mass at the rim. Once the station is completed, it is set rotating at a rate that requires an object at the rim to have radial acceleration g , thereby simulating Earth's surface gravity. This is accomplished using two small rockets, each with 130 N thrust, that are mounted on the rim of the station. How long will it take to reach the desired spin rate, and how many revolutions will the station make in this time?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 54P: Why is the following situation impossible? A space station shaped like a giant wheel has a radius of...
icon
Related questions
icon
Concept explainers
Question
100%

A space station is constructed in the shape of a wheel 20 m in diameter, with essentially all of its 5.2×105 kg mass at the rim. Once the station is completed, it is set rotating at a rate that requires an object at the rim to have radial acceleration , thereby simulating Earth's surface gravity. This is accomplished using two small rockets, each with 130 N thrust, that are mounted on the rim of the station. How long will it take to reach the desired spin rate, and how many revolutions will the station make in this time?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill