A two dimensional, steady, incompressible and potential flow field of water (ρ=1000 kg/m3) is given with velocity components u and v. If the velocity component, u is given as u=2xy m/s with the magnitude of maximum pressure in the field as 52108 Pa. a) At x=+1 m and y=+2 m point, what is the magnitude of the velocity component v (in m/s)? (Please use 2 decimal digits in your answer) b) At x=+1 m and y=+2 m point, what is the magnitude of dynamic pressure (in Pa)? (Please do not use any decimal digit in your answer) c) At x=+1 m and y=+2 m point, what is the magnitude of static pressure (in Pa)? (Please do not use any decimal digit in your answer)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A two dimensional, steady, incompressible and potential flow field of water (ρ=1000 kg/m3) is given with velocity components u and v. If the velocity component, u is given as u=2xy m/s with the magnitude of maximum pressure in the field as 52108 Pa.

a) At x=+1 m and y=+2 m point, what is the magnitude of the velocity component v (in m/s)? (Please use 2 decimal digits in your answer)

b) At x=+1 m and y=+2 m point, what is the magnitude of dynamic pressure (in Pa)? (Please do not use any decimal digit in your answer)

c) At x=+1 m and y=+2 m point, what is the magnitude of static pressure (in Pa)? (Please do not use any decimal digit in your answer)

 

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Kinematics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY