A two-story building has steel columns AB in the first floor and BC in the second floor, as shown in the figure. The roof load P1 equals 400 kN and the second floor load P2 equals 720 kN. Each column has length L = 3.75 m. The cross-sectional areas of the first- and second floor columns are 11,000 mm? and 3,900 mm?, respectively. (a) Assuming that E = 206 GPa, determine the total shortening Sac of the two columns due to the combined action of the loads P1 and P2. (b) How much additional load Po can be placed at the top of the column (point C) if the total shortening Sac is not to exceed 4.0 mm? P1 = 400 kN L = 3.75 m P2 = 720 kN L = 3.75 m

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter2: Axially Loaded Members
Section: Chapter Questions
Problem 2.3.10P: A two-story building has steel columns AB in the first floor and BC in the second floor, as shown in...
icon
Related questions
Question

Show fbd and solution 

A two-story building has steel columns AB in the first floor and BC in the second floor, as shown in
the figure. The roof load P1 equals 400 kN and the second floor load P2 equals 720 kN. Each
column has length L = 3.75 m. The cross-sectional areas of the first- and second floor columns are
11,000 mm? and 3,900 mm?, respectively. (a) Assuming that E = 206 GPa, determine the total
shortening Sac of the two columns due to the combined action of the loads P1 and P2. (b) How
much additional load Po can be placed at the top of the column (point C) if the total shortening Sac
is not to exceed 4.0 mm?
P = 400 kN
L = 3.75 m
P2 = 720 kN
L = 3.75 m
Transcribed Image Text:A two-story building has steel columns AB in the first floor and BC in the second floor, as shown in the figure. The roof load P1 equals 400 kN and the second floor load P2 equals 720 kN. Each column has length L = 3.75 m. The cross-sectional areas of the first- and second floor columns are 11,000 mm? and 3,900 mm?, respectively. (a) Assuming that E = 206 GPa, determine the total shortening Sac of the two columns due to the combined action of the loads P1 and P2. (b) How much additional load Po can be placed at the top of the column (point C) if the total shortening Sac is not to exceed 4.0 mm? P = 400 kN L = 3.75 m P2 = 720 kN L = 3.75 m
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Basic Terminology in Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning