A vapour compression refrigerator circulates 4.5 kg of NH3 per hour. Condensation take place at 30°C and evaporation at – 15°C. There is no under-cooling of the refrigerant. The temperature after isentropic compression is 75°C and specific heat of superheated vapour is 2.82 kJ/kg K. Determine : (i) Co-efficient of performance. (ii) Ice produced in kg per hour in the evaporator from water at 20°C and ice at 0°C. Take : Enthalpy of fusion of ice = 336 kJ/kg, specific heat of water = 4.187 kJ/kg. (iii) The effective swept volume of the compressor in m3 /min

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter45: Domestic Refrigerators And Freezers
Section: Chapter Questions
Problem 12RQ: Refrigerators currently being manufactured in the United States are using______as their refrigerant.
icon
Related questions
Question
A vapour compression refrigerator circulates 4.5 kg of NH3 per hour. Condensation take place at 30°C and evaporation at – 15°C. There is no under-cooling of the refrigerant. The temperature after isentropic compression is 75°C and specific heat of superheated vapour is 2.82 kJ/kg K. Determine : (i) Co-efficient of performance. (ii) Ice produced in kg per hour in the evaporator from water at 20°C and ice at 0°C. Take : Enthalpy of fusion of ice = 336 kJ/kg, specific heat of water = 4.187 kJ/kg. (iii) The effective swept volume of the compressor in m3 /min.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning