According to this law, force of attraction from larger on smaller mass is r m M O Equal to the force from smaller mass on larger mass O Larger than the force from smaller mass on larger mass There is no information to answer this question O Smaller than the force from smaller mass on larger mass

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter13: Gravitation
Section: Chapter Questions
Problem 2CQ: In the law of universal gravitation, Newton assumed that the force was proportional to the product...
icon
Related questions
Question
Newton's universal law of gravitation states that every particle in the
universe attracts every other particle with a force along a line joining them.
The force is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them.
Mathematically, it can be written as
GMm
F =
According to this law, force of attraction from larger on smaller mass is
m
M
Equal to the force from smaller mass on larger mass
Larger than the force from smaller mass on larger mass
There is no information to answer this question
O Smaller than the force from smaller mass on larger mass
Transcribed Image Text:Newton's universal law of gravitation states that every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. Mathematically, it can be written as GMm F = According to this law, force of attraction from larger on smaller mass is m M Equal to the force from smaller mass on larger mass Larger than the force from smaller mass on larger mass There is no information to answer this question O Smaller than the force from smaller mass on larger mass
Newton's universal law of gravitation states that every particle in the
universe attracts every other particle with a force along a line joining them.
The force is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them.
Mathematically, it can be written as
GMm
F
According to this law, when mass of both objects is doubled, the force
r
m
becomes two times larger compared to original
O becomes four times larger compared to original
becomes quarter of the original
O becomes half compared to original
Transcribed Image Text:Newton's universal law of gravitation states that every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. Mathematically, it can be written as GMm F According to this law, when mass of both objects is doubled, the force r m becomes two times larger compared to original O becomes four times larger compared to original becomes quarter of the original O becomes half compared to original
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
The Solar System
The Solar System
Physics
ISBN:
9781337672252
Author:
The Solar System
Publisher:
Cengage