b) Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/mk and a thickness L = 0.25 m, with no internal heat generation. Determine i) the heat flux and the unknown quantity for each case; and ii) sketch the temperature distribution, indicating the direction of the heat flux. Case T1(°C) T2(°C) dT/dx (K/m) (W/m2) 1 50 -20 2 70 160 3 40 -80

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.4P: A plane wall 15 cm thick has a thermal conductivity given by the relation k=2.0+0.0005T[W/mK] where...
icon
Related questions
Question

pls ans quickly

b) Consider steady-state conditions for one-dimensional conduction in a plane wall
having a thermal conductivity k = 50 W/mk and a thickness L = 0.25 m, with no
internal heat generation. Determine
i) the heat flux and the unknown quantity for each case; and
ii) sketch the temperature distribution, indicating the direction of the heat flux.
Case
T:(°C)
T2(°C)
dT/dx (K/m)
(W/m?)
1
50
-20
2
70
160
3
40
-80
Transcribed Image Text:b) Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/mk and a thickness L = 0.25 m, with no internal heat generation. Determine i) the heat flux and the unknown quantity for each case; and ii) sketch the temperature distribution, indicating the direction of the heat flux. Case T:(°C) T2(°C) dT/dx (K/m) (W/m?) 1 50 -20 2 70 160 3 40 -80
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Metrology of Surface Finish
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning