Consider a spherical aluminum tank used to store ice at 0oC with an internal radius of 0.6 m, wall 10 cm thick and k=15.1 W/(m.oC). The exposed surface of the container exchanges heat by convection with ambient air at 30oC and h=20 W/(m2.oC). Ask: (a) Write the differential equation that describes heat conduction through the wall; (b) Solve the equation to obtain the wall temperature profile of the tank as a function of the radial position, using as conditions boundary the temperatures of the surfaces T1 (at r=r1) and T2 (at r=r2); (c) Apply an energy balance on the surface r=r2 to estimate the temperature T2 (d) Obtain the heat gain rate (in W)

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter4: Numerical Analysis Of Heat Conduction
Section: Chapter Questions
Problem 4.10P
icon
Related questions
Question
100%

Consider a spherical aluminum tank used to store
ice at 0oC with an internal radius of 0.6 m, wall 10 cm thick and k=15.1 W/(m.oC). The exposed surface of the container exchanges heat by convection with ambient air at 30oC and h=20 W/(m2.oC). Ask:
(a) Write the differential equation that describes heat conduction
through the wall;
(b) Solve the equation to obtain the wall temperature profile
of the tank as a function of the radial position, using as conditions
boundary the temperatures of the surfaces T1 (at r=r1) and T2 (at
r=r2);

(c) Apply an energy balance on the surface r=r2 to estimate the
temperature T2
(d) Obtain the heat gain rate (in W).

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning