Geb. Gebhardt Electronics produces a wide variety of transformers that it sells directly to manufacturers of electronics equipment. For one component used in several models of its transformers, Gebhardt uses a 3-foot length of .20 mm diameter solid wire made of pure Oxygen-Free Electronic (OFE) copper. A flaw in the wire reduces its conductivity and increases the likelihood it will break, and this critical component is difficult to reach and repair after a transformer has been constructed. Therefore, Gebhardt wants to use primarily flawless lengths of wire in making this component. The company is willing to accept no more than a 1 in 20 chance that a 3-foot length taken from a spool will be flawless. Gebhardt also occasionally uses smaller pieces of the same wire in the manufacture of other compo- nents, so the 3-foot segments to be used for this component are essentially taken randomly Trom a long spool of .20 mm diameter solid OFE copper wire. Gebhardt is now considering a new supplier for copper wire. This supplier claims that its =pools of .20 mm diameter solid OFE copper wire average 50 inches between flaws. Gebhardt now must determine whether the new supply will be satisfactory if the supplier's claim is valid. Managerial Report a making this assessment for Gebhardt Electronics, consider the following three questions: 1. If the new supplier does provide spools of .20 mm solid OFE copper wire that aver- age 50 inches between flaws, how is the length of wire between two consecutive flaws distributed? 2. Using the probability distribution you identified in (1), what is the probability that Gebhardt's criteria will be met (i.e., a l in 20 chance that a randomly selected 3-foot segment of wire provided by the new supplier will be flawless)? 3. In inches, what is the minimum mean length between consecutive flaws that would result in satisfaction of Gebhardt's criteria? 4. In inches, what is the minimum mean length between consecutive flaws that would result in a 1 in 100 chance that a randomly selected 3-foot segment of wire provided by the new supplier will be flawless?

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter7: Distance And Approximation
Section7.3: Least Squares Approximation
Problem 32EQ
icon
Related questions
Question
Gebhardt Electronics
Gebhardt Electronics produces a wide variety of transformers that it sells directly to
manufacturers of electronics equipment. For one component used in several models of its
transformers, Gebhardt uses a 3-foot length of .20 mm diameter solid wire made of pure
Oxygen-Free Electronic (OFE) copper. A flaw in the wire reduces its conductivity and
increases the likelihood it will break, and this critical component is difficult to reach and
repair after a transformer has been constructed. Therefore, Gebhardt wants to use primarily
flawless lengths of wire in making this component. The company is willing to accept no
more than a l in 20 chance that a 3-foot length taken from a spool will be flawless. Gebhardt
also occasionally uses smaller pieces of the same wire in the manufacture of other compo-
nents, so the 3-foot segments to be used for this component are essentially taken randomly
from a long spool of .20 mm diameter solid OFE copper wire.
Gebhardt is now considering a new supplier for copper wire. This supplier claims that its
spools of .20 mm diameter solid OFE copper wire average 50 inches between flaws. Gebhardt
now must determine whether the new supply will be satisfactory if the supplier's claim is valid.
Managerial Report
In making this assessment for Gebhardt Electronics, consider the following three questions:
1. If the new supplier does provide spools of .20 mm solid OFE copper wire that aver-
age 50 inches between flaws, how is the length of wire between two consecutive
flaws distributed?
2. Using the probability distribution you identified in (1), what is the probability that
Gebhardt's criteria will be met (i.e., a l in 20 chance that a randomly selected 3-foot
segment of wire provided by the new supplier will be flawless)?
3. In inches, what is the minimum mean length between consecutive flaws that would
result in satisfaction of Gebhardt's criteria?
4. In inches, what is the minimum mean length between consecutive flaws that would
result in a 1 in 100 chance that a randomly selected 3-foot segment of wire provided
by the new supplier will be flawless?
Transcribed Image Text:Gebhardt Electronics Gebhardt Electronics produces a wide variety of transformers that it sells directly to manufacturers of electronics equipment. For one component used in several models of its transformers, Gebhardt uses a 3-foot length of .20 mm diameter solid wire made of pure Oxygen-Free Electronic (OFE) copper. A flaw in the wire reduces its conductivity and increases the likelihood it will break, and this critical component is difficult to reach and repair after a transformer has been constructed. Therefore, Gebhardt wants to use primarily flawless lengths of wire in making this component. The company is willing to accept no more than a l in 20 chance that a 3-foot length taken from a spool will be flawless. Gebhardt also occasionally uses smaller pieces of the same wire in the manufacture of other compo- nents, so the 3-foot segments to be used for this component are essentially taken randomly from a long spool of .20 mm diameter solid OFE copper wire. Gebhardt is now considering a new supplier for copper wire. This supplier claims that its spools of .20 mm diameter solid OFE copper wire average 50 inches between flaws. Gebhardt now must determine whether the new supply will be satisfactory if the supplier's claim is valid. Managerial Report In making this assessment for Gebhardt Electronics, consider the following three questions: 1. If the new supplier does provide spools of .20 mm solid OFE copper wire that aver- age 50 inches between flaws, how is the length of wire between two consecutive flaws distributed? 2. Using the probability distribution you identified in (1), what is the probability that Gebhardt's criteria will be met (i.e., a l in 20 chance that a randomly selected 3-foot segment of wire provided by the new supplier will be flawless)? 3. In inches, what is the minimum mean length between consecutive flaws that would result in satisfaction of Gebhardt's criteria? 4. In inches, what is the minimum mean length between consecutive flaws that would result in a 1 in 100 chance that a randomly selected 3-foot segment of wire provided by the new supplier will be flawless?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Determine the minimum mean length, in inches, between consecutive flaws that would result in satisfying Gebhardt's criteria

 

Solution
Bartleby Expert
SEE SOLUTION
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage