Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity is 8.00 m/s2, and atmospheric pressure is 8.80 ✕ 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid methane ocean to be 415 kg/m3. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean?  N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m? (Enter your answer in N.)  N (c) What is the pressure (in Pa) at a depth of 10.0 m in the methane ocean?

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter10: Motion In A Noninertial Reference Frame
Section: Chapter Questions
Problem 10.20P: Calculate the effective gravitational field vector g at Earths surface at the poles and the equator....
icon
Related questions
Question
Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity is 8.00 m/s2, and atmospheric pressure is 8.80 ✕ 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid methane ocean to be 415 kg/m3.
(a)
What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean?
 N
(b)
What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m? (Enter your answer in N.)
 N
(c)
What is the pressure (in Pa) at a depth of 10.0 m in the methane ocean?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Density of solids
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning