Java: Write a program to find the number of comparison using sequentialSearch and binarySearch algorithms using an array of 1200 elements. Use a random number generator to fill list by using a sorting algorithm to sort list and search list for the binary search algorithm to search list. Use the sequential search algorithm to search list and print the number of comparisons. If the item is found in the list, print its position. public class SearchSortAlgorithms implements SearchSortADT{ private int comparisons; public int noOfComparisons(){ return comparisons; } public void initializeNoOfComparisons(){ comparisons = 0; } public int seqSearch(T[] list, int start, int length, T searchItem){ int loc; boolean found = false; for (loc = start; loc < length; loc++){ if (list[loc].equals(searchItem)){ found = true; break; } } if (found) return loc; else return -1; } public int binarySearch(T[] list, int start, int length, T searchItem){ int first = start; int last = length - 1; int mid = -1; boolean found = false; while (first <= last && !found){ mid = (first + last) / 2; Comparable compElem = (Comparable) list[mid]; if (compElem.compareTo(searchItem) == 0) found = true; else{ if (compElem.compareTo(searchItem) > 0) last = mid - 1; else first = mid + 1; } } if (found) return mid; else return -1; } public int binSeqSearch15(T[] list, int start, int length, T searchItem){ int first = 0; int last = length - 1; int mid = -1; boolean found = false; while (last - first > 15 && !found){ mid = (first + last) / 2; Comparable compElem = (Comparable) list[mid]; comparisons++; if (compElem.compareTo(searchItem) ==0) found = true; else{ if (compElem.compareTo(searchItem) > 0) last = mid - 1; else first = mid + 1; } } if (found) return mid; else return seqSearch(list, first, last, searchItem); } public void bubbleSort(T list[], int length){ for (int iteration = 1; iteration < length; iteration++){ for (int index = 0; index < length - iteration; index++){ Comparable compElem = (Comparable) list[index]; if (compElem.compareTo(list[index + 1]) > 0){ T temp = list[index]; list[index] = list[index + 1]; list[index + 1] = temp; } } } } public void selectionSort(T[] list, int length){ for (int index = 0; index < length - 1; index++){ int minIndex = minLocation(list, index, length - 1); swap(list, index, minIndex); } } private int minLocation(T[] list, int first, int last) { int minIndex = first; for (int loc = first + 1; loc <= last; loc++){ Comparable compElem = (Comparable) list[loc]; if (compElem.compareTo(list[minIndex]) < 0) minIndex = loc; } return minIndex; } private void swap(T[] list, int first, int second){ T temp; temp = list[first]; list[first] = list[second]; list[second] = temp; } public void insertionSort(T[] list, int length){ for (int firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder ++){ Comparable compElem = (Comparable) list[firstOutOfOrder]; if (compElem.compareTo(list[firstOutOfOrder - 1]) < 0){ Comparable temp = (Comparable) list[firstOutOfOrder]; int location = firstOutOfOrder; do{ list[location] = list[location - 1]; location--; } while (location > 0 && temp.compareTo(list[location - 1]) < 0); list[location] = (T) temp; } } } public void quickSort(T[] list, int length){ recQuickSort(list, 0, length - 1); } private int partition(T[] list, int first, int last){ T pivot; int smallIndex; swap(list, first, (first + last) / 2); pivot = list[first]; smallIndex = first; for (int index = first + 1; index <= last; index++){ Comparable compElem = (Comparable) list[index]; if (compElem.compareTo(pivot) < 0){ smallIndex++; swap(list, smallIndex, index); } } swap(list, first, smallIndex); return smallIndex; } private void recQuickSort(T[] list, int first, int last){ if (first < last){ int pivotLocation = partition(list, first, last); recQuickSort(list, first, pivotLocation - 1); recQuickSort(list, pivotLocation + 1, last); } } public void heapSort(T[] list, int length){ buildHeap(list, length); for (int lastOutOfOrder = length - 1; lastOutOfOrder >= 0; lastOutOfOrder--){ T temp = list[lastOutOfOrder]; list[lastOutOfOrder] = list[0]; list[0] = temp; heapify(list, 0, lastOutOfOrder - 1); } } private void heapify(T[] list, int low, int high){ int largeIndex; Comparable temp = (Comparable) list[low]; largeIndex = 2 * low + 1; while (largeIndex <= high){ if (largeIndex < high) { Comparable compElem = (Comparable) list[largeIndex]; if (compElem.compareTo(list[largeIndex + 1]) < 0) largeIndex = largeIndex + 1; } if (temp.compareTo(list[largeIndex]) > 0) break; else{ list[low] = list[largeIndex]; low = largeIndex; largeIndex = 2 * low + 1; } } list[low] = (T) temp; } private void buildHeap(T[] list, int length){ for (int index = length / 2 - 1; index >= 0; index--) heapify(list, index, length - 1); } }

C++ Programming: From Problem Analysis to Program Design
8th Edition
ISBN:9781337102087
Author:D. S. Malik
Publisher:D. S. Malik
Chapter16: Searching, Sorting And Vector Type
Section: Chapter Questions
Problem 1TF
icon
Related questions
Question

Java: Write a program to find the number of comparison using sequentialSearch and binarySearch algorithms using an array of 1200 elements. Use a random number generator to fill list by using a sorting algorithm to sort list and search list for the binary search algorithm to search list. Use the sequential search algorithm to search list and print the number of comparisons. If the item is found in the list, print its position.

public class SearchSortAlgorithms<T> implements SearchSortADT<T>{
private int comparisons;
public int noOfComparisons(){
return comparisons;
}
public void initializeNoOfComparisons(){
comparisons = 0;
}
public int seqSearch(T[] list, int start, int length, T searchItem){
int loc;
boolean found = false;
for (loc = start; loc < length; loc++){
if (list[loc].equals(searchItem)){
found = true;
break;
}
}
if (found)
return loc;
else
return -1;
}
public int binarySearch(T[] list, int start, int length, T searchItem){
int first = start;
int last = length - 1;
int mid = -1;
boolean found = false;
while (first <= last && !found){
mid = (first + last) / 2;
Comparable<T> compElem = (Comparable<T>) list[mid];
if (compElem.compareTo(searchItem) == 0)
found = true;
else{
if (compElem.compareTo(searchItem) > 0)
last = mid - 1;
else
first = mid + 1;
}
}
if (found)
return mid;
else
return -1;
}
public int binSeqSearch15(T[] list, int start, int length, T searchItem){
int first = 0;
int last = length - 1;
int mid = -1;
boolean found = false;
while (last - first > 15 && !found){
mid = (first + last) / 2;
Comparable<T> compElem = (Comparable<T>) list[mid];
comparisons++;
if (compElem.compareTo(searchItem) ==0)
found = true;
else{
if (compElem.compareTo(searchItem) > 0)
last = mid - 1;
else
first = mid + 1;
}
}
if (found)
return mid;
else
return seqSearch(list, first, last, searchItem);
}
public void bubbleSort(T list[], int length){
for (int iteration = 1; iteration < length; iteration++){
for (int index = 0; index < length - iteration;
index++){
Comparable<T> compElem =
(Comparable<T>) list[index];
if (compElem.compareTo(list[index + 1]) > 0){
T temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}
}
}
}
public void selectionSort(T[] list, int length){
for (int index = 0; index < length - 1; index++){
int minIndex = minLocation(list, index, length - 1);
swap(list, index, minIndex);
}
}
private int minLocation(T[] list, int first, int last) {
int minIndex = first;
for (int loc = first + 1; loc <= last; loc++){
Comparable<T> compElem = (Comparable<T>) list[loc];
if (compElem.compareTo(list[minIndex]) < 0)
minIndex = loc;
}
return minIndex;
}
private void swap(T[] list, int first, int second){
T temp;
temp = list[first];
list[first] = list[second];
list[second] = temp;
}
public void insertionSort(T[] list, int length){
for (int firstOutOfOrder = 1; firstOutOfOrder < length;
firstOutOfOrder ++){
Comparable<T> compElem =
(Comparable<T>) list[firstOutOfOrder];
if (compElem.compareTo(list[firstOutOfOrder - 1]) < 0){
Comparable<T> temp =
(Comparable<T>) list[firstOutOfOrder];
int location = firstOutOfOrder;
do{
list[location] = list[location - 1];
location--;
}
while (location > 0 &&
temp.compareTo(list[location - 1]) < 0);
list[location] = (T) temp;
}
}
}
public void quickSort(T[] list, int length){
recQuickSort(list, 0, length - 1);
}
private int partition(T[] list, int first, int last){
T pivot;
int smallIndex;
swap(list, first, (first + last) / 2);
pivot = list[first];
smallIndex = first;
for (int index = first + 1; index <= last; index++){
Comparable<T> compElem = (Comparable<T>) list[index];
if (compElem.compareTo(pivot) < 0){
smallIndex++;
swap(list, smallIndex, index);
}
}
swap(list, first, smallIndex);
return smallIndex;
}
private void recQuickSort(T[] list, int first, int last){
if (first < last){
int pivotLocation = partition(list, first, last);
recQuickSort(list, first, pivotLocation - 1);
recQuickSort(list, pivotLocation + 1, last);
}
}
public void heapSort(T[] list, int length){
buildHeap(list, length);
for (int lastOutOfOrder = length - 1; lastOutOfOrder >= 0;
lastOutOfOrder--){
T temp = list[lastOutOfOrder];
list[lastOutOfOrder] = list[0];
list[0] = temp;
heapify(list, 0, lastOutOfOrder - 1);
}
}
private void heapify(T[] list, int low, int high){
int largeIndex;
Comparable<T> temp =
(Comparable<T>) list[low];
largeIndex = 2 * low + 1;
while (largeIndex <= high){
if (largeIndex < high) {
Comparable<T> compElem =
(Comparable<T>) list[largeIndex];
if (compElem.compareTo(list[largeIndex + 1]) < 0)
largeIndex = largeIndex + 1;
}
if (temp.compareTo(list[largeIndex]) > 0)
break;
else{
list[low] = list[largeIndex];
low = largeIndex;
largeIndex = 2 * low + 1;
}
}
list[low] = (T) temp;
}
private void buildHeap(T[] list, int length){
for (int index = length / 2 - 1; index >= 0; index--)
heapify(list, index, length - 1);
}
}

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Arrays
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
C++ Programming: From Problem Analysis to Program…
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning