Let's consider a rod having a solid circular cross- section with diameter of 4 mm and it is made of a material having a Young's modulus E = 120 Gpa and a Poisson's ratio of 0.33. If a tensile force F is subjected to that rod cross-section, the diameter becomes 3.995 mm. determine the applied force F. Select one: F = 3427 N F = 2856 N F = 5712 N F = 8568 N F = 7140 N F = 2285 N

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter8: Applications Of Plane Stress (pressure Vessels, Beams, And Combined Loadings)
Section: Chapter Questions
Problem 8.2.7P: (a) Solve part (a) of the preceding problem if the pressure is 8.5 psi, the diameter is 10 in., the...
icon
Related questions
icon
Concept explainers
Question
Let's consider a rod having a solid circular cross-
section with diameter of 4 mm and it is made of a
material having a Young's modulus E = 120 Gpa
and a Poisson's ratio of 0.33. If a tensile force F is
subjected to that rod cross-section, the diameter
becomes 3.995 mm. determine the applied force
F.
Select one:
F = 3427 N
F = 2856 N
F = 5712 N
F = 8568 N
F = 7140 N
F = 2285 N
Transcribed Image Text:Let's consider a rod having a solid circular cross- section with diameter of 4 mm and it is made of a material having a Young's modulus E = 120 Gpa and a Poisson's ratio of 0.33. If a tensile force F is subjected to that rod cross-section, the diameter becomes 3.995 mm. determine the applied force F. Select one: F = 3427 N F = 2856 N F = 5712 N F = 8568 N F = 7140 N F = 2285 N
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Combined Loading
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning