One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 7571 dark fringes move past the reference line. The laser has a wavelength of 687 nm (this is the wavelength when the light from the laser is moving through a vacuum). Laser Mirror Beam Splitter Diffraction Pattern Glass Container Mirror A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L. number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to determine how many wavelengths fit into the container (length of 2L) when it is finished being filled with gas. number of wavelengths (gas) = C.) Determine the index of refraction of the gas at its final density. How can you combine your answers for (A) & (B) to take advantage of the formula derived in the Content section? n =

Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter36: Wave Optics
Section: Chapter Questions
Problem 40AP
icon
Related questions
Question
One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the
glass container is a vacuum. When gas is slowly allowed into the container, a total of 7571 dark fringes move past the reference line. The laser has a wavelength of 687 nm (this is the wavelength when the light from
the laser is moving through a vacuum).
Laser
Mirror
Glass Container
Beam Splitter
Diffraction Pattern
Mirror
A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the
light passes through the container twice, you need to determine how many wavelengths will fit into a
glass container that has a length of 2L.
number of wavelengths (vacuum) =
B.) The number of dark fringes is the difference between the number of wavelengths that fit in the
container (length of 2L) when it has gas and the number of wavelengths that fit in the container
(length of 2L) when it is a vacuum. Use this knowledge to determine how many wavelengths fit into the
container (length of 2L) when it is finished being filled with gas.
number of wavelengths (gas) =
C.) Determine the index of refraction of the gas at its final density. How can you combine your answers
for (A) & (B) to take advantage of the formula derived in the Content section?
n=
4
Transcribed Image Text:One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 7571 dark fringes move past the reference line. The laser has a wavelength of 687 nm (this is the wavelength when the light from the laser is moving through a vacuum). Laser Mirror Glass Container Beam Splitter Diffraction Pattern Mirror A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L. number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to determine how many wavelengths fit into the container (length of 2L) when it is finished being filled with gas. number of wavelengths (gas) = C.) Determine the index of refraction of the gas at its final density. How can you combine your answers for (A) & (B) to take advantage of the formula derived in the Content section? n= 4
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Diffraction of light
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill