On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada, much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's mass was about 4.3 x 10° kg; it's speed was about 16 km/s. Had it entered the atmosphere vertically, it would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of energy (as a positive number, in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is 4.2 x 1015 J. (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent? (a) Number Units (b) Number Units (c) Number i Units

College Physics
10th Edition
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter6: Momentum And Collisions
Section: Chapter Questions
Problem 10WUE
icon
Related questions
icon
Concept explainers
Question
On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States
and western Canada, much like a stone skipped across water. The accompanying fireball was so bright
that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's
mass was about 4.3 x 10° kg; it's speed was about 16 km/s. Had it entered the atmosphere vertically, it
would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of energy
(as a positive number, in joules) that would have been associated with the vertical impact. (b) Express
the energy as a multiple of the explosive energy of 1 megaton of TNT, which is 4.2 x 1015 J. (c) The
energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of
TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent?
(a) Number
Units
(b) Number
Units
(c) Number
i
Units
Transcribed Image Text:On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada, much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's mass was about 4.3 x 10° kg; it's speed was about 16 km/s. Had it entered the atmosphere vertically, it would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of energy (as a positive number, in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is 4.2 x 1015 J. (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent? (a) Number Units (b) Number Units (c) Number i Units
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Gravitational Force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill