Problem 12:  When water flows through river rapids or over a waterfall, it experiences a decrease in height and thus a decrease in gravitational potential energy. Some of this energy goes into producing noise and eroding rock, but much of the energy goes into heating the water. A river flows over a waterfall of height h = 41 m. Assume all the available gravitational energy is converted into internal energy of the water. There is no change in the kinetic energy, because the flow speed of the river is the same above and below the waterfall. Part (a)  Enter an expression for the change in temperature of the water, in terms of the height of the waterfall, h, the specific heat of water, c, and the acceleration due to gravity, g. Part (b)  Calculate the change in temperature, in degrees Celsius, of the river water in this problem. The specific heat of water is 4.19×103 J/(kg⋅°C).

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 79P
icon
Related questions
icon
Concept explainers
Topic Video
Question

 Problem 12:  When water flows through river rapids or over a waterfall, it experiences a decrease in height and thus a decrease in gravitational potential energy. Some of this energy goes into producing noise and eroding rock, but much of the energy goes into heating the water. A river flows over a waterfall of height h = 41 m. Assume all the available gravitational energy is converted into internal energy of the water. There is no change in the kinetic energy, because the flow speed of the river is the same above and below the waterfall.

Part (a)  Enter an expression for the change in temperature of the water, in terms of the height of the waterfall, h, the specific heat of water, c, and the acceleration due to gravity, g.

Part (b)  Calculate the change in temperature, in degrees Celsius, of the river water in this problem. The specific heat of water is 4.19×103 J/(kg⋅°C). 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning