Problem 2. Water at 150°F is pumped at the rate of 60 gal/min from a reservoir at atmospheric gauge pressure at the end of the discharge line is 42 psi. The discharge point is 12 ft above the level is the reservoir and the suction line is 6 ft above the level of the reservoir. The discharge line is a1½ in. nominal dimeter steel pipe with a schedule number of 80. The pressure drop due to friction in the suction line is known to be 0.8 psi, and that in the discharge line is 7.2 psi. The mechanical efficiency of the pump is 70%. Calculate (a) the developed head of the pump and (b) the total power input. (c) If the pump manufacturer specifies a required NPSH of 8 ft, will the pump be suitable for this service? pressure. The

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Heat Transfer Question 

Problem 2. Water at 150°F is pumped at the rate of 60 gal/min from a reservoir at atmospheric
pressure. The gauge pressure at the end of the discharge line is 42 psi. The discharge point is 12 ft above
the level is the reservoir and the suction line is 6 ft above the level of the reservoir. The discharge line is
a1 ½ in. nominal dimeter steel pipe with a schedule number of 80. The pressure drop due to friction in
the suction line is known to be 0.8 psi, and that in the discharge line is 7.2 psi. The mechanical efficiency
of the pump is 70%. Calculate (a) the developed head of the pump and (b) the total power input. (c) If the
pump manufacturer specifies a required NPSH of 8 ft, will the pump be suitable for this service?
Transcribed Image Text:Problem 2. Water at 150°F is pumped at the rate of 60 gal/min from a reservoir at atmospheric pressure. The gauge pressure at the end of the discharge line is 42 psi. The discharge point is 12 ft above the level is the reservoir and the suction line is 6 ft above the level of the reservoir. The discharge line is a1 ½ in. nominal dimeter steel pipe with a schedule number of 80. The pressure drop due to friction in the suction line is known to be 0.8 psi, and that in the discharge line is 7.2 psi. The mechanical efficiency of the pump is 70%. Calculate (a) the developed head of the pump and (b) the total power input. (c) If the pump manufacturer specifies a required NPSH of 8 ft, will the pump be suitable for this service?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Mechanisms of Heat Transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY