
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_blobs
n_samples = [750,750,750]
cluster_std = 1
random_state = 200
X, Y_true = make_blobs(n_samples=n_samples, random_state=random_state, cluster_std=cluster_std)
plt.scatter(X[:, 0], X[:, 1], marker='.', c=Y_true)
#DBSCAN model, setting up required parameters
eps = 0.4
min_Samples = 10
db = DBSCAN(eps=eps, min_samples=min_Samples).fit(X)
labels = db.labels_
labels
# To count number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
# Plot result
# Use black to label noise points.
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
# Plot the points with colors
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise points.
col = 'k'
class_member_mask = (labels == k)
# Plot the datapoints that are clustered
xy = X[class_member_mask & core_samples_mask]
plt.scatter(xy[:, 0], xy[:, 1], c=[col], marker=u'o', alpha=0.5)
# Plot the border points and noise points
xy = X[class_member_mask & ~core_samples_mask]
plt.scatter(xy[:, 0], xy[:, 1], c=[col], marker=u'x', alpha=0.5)'
QUESTION: (PYTHON PROGRAMMING)
Edit the code to reduce the black points ( black noise ).
TIP: adjust eps and min_Samples
https://ibb.co/b2jwzSy

Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

- def upgrade_stations(threshold: int, num_bikes: int, stations: List["Station"]) -> int: """Modify each station in stations that has a capacity that is less than threshold by adding num_bikes to the capacity and bikes available counts. Modify each station at most once. Return the total number of bikes that were added to the bike share network. Precondition: num_bikes >= 0arrow_forwardthe below is an example of diabetes dataset import matplotlib.pyplot as pltimport numpy as npfrom sklearn.datasets import load_diabetesfrom sklearn import linear_model d = load_diabetes()d_X = d.data[:, np.newaxis, 2]dx_train = d_X[:-20]dy_train = d.target[:-20]dx_test = d_X[-20:]dy_test = d.target[-20:] lr = linear_model.LinearRegression()lr.fit(dx_train, dy_train) mse = np.mean((lr.predict(dx_test) - dy_test) **2)lr_score = lr.score(dx_test, dy_test) print(lr.coef_)print(mse)print(lr_score)plt.scatter(dx_test, dy_test)plt.plot(dx_test, lr.predict(dx_test), c='r')plt.show()arrow_forwardWrite the lines of code to insert the key (book's ISBN) and value ("book") pair into "my_hash_table".arrow_forward
- import matplotlib.pyplot as pltvtn = 0.7vtp = -0.7vdd = 5Bn = Bp = 380vout = [None]*26vin = [0.0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0,4.2,4.4,4.6,4.8,5.0]for i in range(0,26):if 0<=vin[i]<=vtn :vout[i] = vddelif vtn <= vin[i] <= vdd / 2:vout[i] = (vin[i] - vtp) + ((vin[i] - vtp) ** 2 - 2 * (vin[i] - vdd / 2 - vtp) * vdd - Bn/Bp * (vin[i] - vtn) ** 2) ** 0.5elif vin[i] == vdd / 2:vout[i] = vin[i]elif vdd / 2 < vin[i] <= vdd + vtp:vout[i] = (vin[i] - vtn) - ((vin[i] - vtn)** 2 - Bn/Bp * (vin[i] - vdd - vtp)** 2)** 0.5elif vin[i] > vdd + vtp:vout[i] = 0plt.plot(vin, vout, marker="o")plt.xlabel("Vin")plt.ylabel("Vout")plt.show() this code in python and out this picture each if statement represent different region I want colored each region in different color pleasearrow_forwarddef makeRandomList(size): lyst = [] for count in range(size): while True: number = random.randint(1, size) if not number in lyst: lyst.append(number) break return lyst give me proper analysis of this code and Big Oarrow_forwardWhat kind of function is map? higher ordered function: filter higher ordered function: composition higher order function: pipeline higher ordered function: apply-to-allarrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education





