SECTION 3.6Derivatives of Logarithmic Functions2233.6 EXERCISES1. Explain why the natural logarithmic functiony In x is usedmuch more frequently in calculus than the other logarithmicfunctions y33-34 Find an equation of the tangent line to the curve at thegiven point.log,x.33. y In(x 3x +1), (3,0)2-22 Differentiate the function.34. y x2 In x, (1,0)2. f(x)=x In x-x3. f(x)= sin( In x)A35. If f(x) = sin x + In x, find f'(x). Check that your answer isreasonable by comparing the graphs of f andf'.4. f(x)In(sinx)5. f(x)= In16. уX36. Find equations of the tangent lines to the curve y= (In x)/xIn xat the points (1,0) and (e, 1/e). Illustrate by graphing thecurve and its tangent lines.7. f(x)= log 10(1 +cos x)8. f(x) log10 x9. g(x) In(xe 2x)37. Let f(x)=f'(T/4) 6?=cx +Incos x). For what value of c is10. g(t) 1 +In t11. F(t)=(In t) sin t12. h(x) In(x + Vx2- 1)3?38. Let f(x) = log,(3x2 - 2 ) . For what value of b is f'(1)(2y1)Vy2139-50 Use logarithmic differentiation to find the derivative of thefunction.In v13. G(y) In14. P(v)1-e cosx40. у 339. y (x2 2)(x4)15. F(s) In ln s16. y In 1+ t - t||xe(x+ 117. T(z)42. y22 log2zcot x)18. y n(csc x -41. yx4 1a2 z220. H(z)=In z244. y x43. y x19. y ln(e xe*)46. y (x)45. y xsinxlog2 (x logs x)(sin x)n21. y tan [In(ax + b)]22. y48. y47. y (cos x)*50. y (In x)osx49. у %3 (tan x)/.23-26 Find y' and y"In x24. yV In x51. Find y' if y In(x2 + y2 ).23. у 31 + ln x52. Find y' if x = y".26. y In(1 + In x)25. y In sec x53. Find a formula for f(x) if f(x) = In(x - 1).d9(x8 In x)dx27-30 Differentiate f and find the domain of f.54. Find28. f(x) 2 + InxX27. f(x)1 - ln(x 1)55. Use the definition of derivative to prove thatIn(1+ xlim30. f(x) In In In x29. f(x) In(x2 2x)х= e* for any X31. If f(x) In(x + In x), find f'(1).56. Show that lim 1пcos (In x2), find f'(1)32. If f(x)

Question
Asked Oct 15, 2019

I need help with question 13 in Section 3.6, page 223, of the James Stewart Calculus Eighth Edition textbook.

SECTION 3.6
Derivatives of Logarithmic Functions
223
3.6 EXERCISES
1. Explain why the natural logarithmic functiony In x is used
much more frequently in calculus than the other logarithmic
functions y
33-34 Find an equation of the tangent line to the curve at the
given point.
log,x.
33. y In(x 3x +1), (3,0)
2-22 Differentiate the function.
34. y x2 In x, (1,0)
2. f(x)=x In x-x
3. f(x)= sin( In x)
A35. If f(x) = sin x + In x, find f'(x). Check that your answer is
reasonable by comparing the graphs of f andf'.
4. f(x)In(sinx)
5. f(x)= In
1
6. у
X
36. Find equations of the tangent lines to the curve y
= (In x)/x
In x
at the points (1,0) and (e, 1/e). Illustrate by graphing the
curve and its tangent lines.
7. f(x)= log 10(1 +cos x)
8. f(x) log10 x
9. g(x) In(xe 2x)
37. Let f(x)=
f'(T/4) 6?
=cx +Incos x). For what value of c is
10. g(t) 1 +In t
11. F(t)=(In t) sin t
12. h(x) In(x + Vx2- 1)
3?
38. Let f(x) = log,(3x2 - 2 ) . For what value of b is f'(1)
(2y1)
Vy21
39-50 Use logarithmic differentiation to find the derivative of the
function.
In v
13. G(y) In
14. P(v)
1-
e cosx
40. у 3
39. y (x2 2)(x4)
15. F(s) In ln s
16. y In 1+ t - t||
xe(x+ 1
17. T(z)
42. y
22 log2z
cot x)
18. y n(csc x -
41. y
x4 1
a2 z2
20. H(z)=In z2
44. y x
43. y x
19. y ln(e xe*)
46. y (x)
45. y xsinx
log2 (x logs x)
(sin x)n
21. y tan [In(ax + b)]
22. y
48. y
47. y (cos x)*
50. y (In x)osx
49. у %3 (tan x)/.
23-26 Find y' and y"
In x
24. y
V In x
51. Find y' if y In(x2 + y2 ).
23. у 3
1 + ln x
52. Find y' if x = y".
26. y In(1 + In x)
25. y In sec x
53. Find a formula for f(x) if f(x) = In(x - 1).
d9
(x8 In x)
dx
27-30 Differentiate f and find the domain of f.
54. Find
28. f(x) 2 + Inx
X
27. f(x)
1 - ln(x 1)
55. Use the definition of derivative to prove that
In(1+ x
lim
30. f(x) In In In x
29. f(x) In(x2 2x)
х
= e* for any X
31. If f(x) In(x + In x), find f'(1).
56. Show that lim 1
п
cos (In x2), find f'(1)
32. If f(x)
help_outline

Image Transcriptionclose

SECTION 3.6 Derivatives of Logarithmic Functions 223 3.6 EXERCISES 1. Explain why the natural logarithmic functiony In x is used much more frequently in calculus than the other logarithmic functions y 33-34 Find an equation of the tangent line to the curve at the given point. log,x. 33. y In(x 3x +1), (3,0) 2-22 Differentiate the function. 34. y x2 In x, (1,0) 2. f(x)=x In x-x 3. f(x)= sin( In x) A35. If f(x) = sin x + In x, find f'(x). Check that your answer is reasonable by comparing the graphs of f andf'. 4. f(x)In(sinx) 5. f(x)= In 1 6. у X 36. Find equations of the tangent lines to the curve y = (In x)/x In x at the points (1,0) and (e, 1/e). Illustrate by graphing the curve and its tangent lines. 7. f(x)= log 10(1 +cos x) 8. f(x) log10 x 9. g(x) In(xe 2x) 37. Let f(x)= f'(T/4) 6? =cx +Incos x). For what value of c is 10. g(t) 1 +In t 11. F(t)=(In t) sin t 12. h(x) In(x + Vx2- 1) 3? 38. Let f(x) = log,(3x2 - 2 ) . For what value of b is f'(1) (2y1) Vy21 39-50 Use logarithmic differentiation to find the derivative of the function. In v 13. G(y) In 14. P(v) 1- e cosx 40. у 3 39. y (x2 2)(x4) 15. F(s) In ln s 16. y In 1+ t - t|| xe(x+ 1 17. T(z) 42. y 22 log2z cot x) 18. y n(csc x - 41. y x4 1 a2 z2 20. H(z)=In z2 44. y x 43. y x 19. y ln(e xe*) 46. y (x) 45. y xsinx log2 (x logs x) (sin x)n 21. y tan [In(ax + b)] 22. y 48. y 47. y (cos x)* 50. y (In x)osx 49. у %3 (tan x)/. 23-26 Find y' and y" In x 24. y V In x 51. Find y' if y In(x2 + y2 ). 23. у 3 1 + ln x 52. Find y' if x = y". 26. y In(1 + In x) 25. y In sec x 53. Find a formula for f(x) if f(x) = In(x - 1). d9 (x8 In x) dx 27-30 Differentiate f and find the domain of f. 54. Find 28. f(x) 2 + Inx X 27. f(x) 1 - ln(x 1) 55. Use the definition of derivative to prove that In(1+ x lim 30. f(x) In In In x 29. f(x) In(x2 2x) х = e* for any X 31. If f(x) In(x + In x), find f'(1). 56. Show that lim 1 п cos (In x2), find f'(1) 32. If f(x)

fullscreen
check_circleExpert Solution
Step 1

Given:

(2y+1)'
G(y) In
+1
help_outline

Image Transcriptionclose

(2y+1)' G(y) In +1

fullscreen
Step 2

Formula used:

chain rule
)-(e)
(g
dx
df
dx
dx
help_outline

Image Transcriptionclose

chain rule )-(e) (g dx df dx dx

fullscreen
Step 3

To find the derivative of G (y), appl...

df (u)_dfdu
du dy
dy
(2y+1)
f =In(u).u=
help_outline

Image Transcriptionclose

df (u)_dfdu du dy dy (2y+1) f =In(u).u=

fullscreen

Want to see the full answer?

See Solution

Check out a sample Q&A here.

Want to see this answer and more?

Solutions are written by subject experts who are available 24/7. Questions are typically answered within 1 hour*

See Solution
*Response times may vary by subject and question
Tagged in

Math

Calculus

Derivative