The figure above shows Einstein spinning on a platform. He is initially spinning at a rate of 1rev/s, and holding his hands a distance of R1 = 80.3 cm away from his body. He then pulls his arms in to a distance of R2 = 40cm, changing his rotational speed. In this problem you can model Einstein’s body as a cylinder with a moment of inertia I = 30MR2, where M is his mass (60kg), and R is the distance his hands are from his body. (Notice that the figure shows him holding weights, but we are going to assume they are massless, to make it simpler!) (a) If he draws his arms in very quickly, you can safely ignore any frictional force on the platform. Assuming this is true, how fast is he rotating after he draws his arms in? (b)  In reality, after he draws his arms in friction will start to slow him down. If this small amount of friction is applying a torque of 4 Nm to the platform, how long would it take before Einstein stops moving?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 56P: A student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56)....
icon
Related questions
icon
Concept explainers
Question

The figure above shows Einstein spinning on a platform. He is initially spinning at a rate of 1rev/s, and holding his hands a distance of R1 = 80.3 cm away from his body. He then pulls his arms in to a distance of R2 = 40cm, changing his rotational speed. In this problem you can model Einstein’s body as a cylinder with a moment of inertia I = 30MR2, where M is his mass (60kg), and R is the distance his hands are from his body. (Notice that the figure shows him holding weights, but we are going to assume they are massless, to make it simpler!)
(a) If he draws his arms in very quickly, you can safely ignore any frictional force on the platform. Assuming this is true, how fast is he rotating after he draws his arms in?

(b)  In reality, after he draws his arms in friction will start to slow him down. If this small amount of friction is applying a torque of 4 Nm to the platform, how long would it take before Einstein stops moving?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning