The vapor pressure of pure benzene is 750.0 torr and the vapor pressure of toluene is 300.0 torr at a certain temperature. You make a solution by pouring “some" benzene with "some" toluene. You then place this solution in a closed container and wait for the vapor to come into equilibrium with the solution. Next, you condense the vapor. You put this liquid (the condensed vapor) in a closed container and wait for the vapor to come into equilibrium with the solution. You then condense this vapor and find the mole fraction of benzene in this vapor to be 0.714. Determine the mole fraction of benzene in the original solution assuming the solution behaves ideally.

EBK A SMALL SCALE APPROACH TO ORGANIC L
4th Edition
ISBN:9781305446021
Author:Lampman
Publisher:Lampman
Chapter84: Fractional Distillation, Azeotropes
Section: Chapter Questions
Problem 2P
icon
Related questions
Question

Please solve this question ASAP.Thanks in advance.

The vapor pressure of pure benzene is 750.0
torr and the vapor pressure of toluene is
300.0 torr at a certain temperature. You
make a solution by pouring “some" benzene
with "some" toluene. You then place this
solution in a closed container and wait for
the vapor to come into equilibrium with the
solution. Next, you condense the vapor. You
put this liquid (the condensed vapor) in a
closed container and wait for the vapor to
come into equilibrium with the solution. You
then condense this vapor and find the mole
fraction of benzene in this vapor to be 0.714.
Determine the mole fraction of benzene in
the original solution assuming the solution
behaves ideally.
Transcribed Image Text:The vapor pressure of pure benzene is 750.0 torr and the vapor pressure of toluene is 300.0 torr at a certain temperature. You make a solution by pouring “some" benzene with "some" toluene. You then place this solution in a closed container and wait for the vapor to come into equilibrium with the solution. Next, you condense the vapor. You put this liquid (the condensed vapor) in a closed container and wait for the vapor to come into equilibrium with the solution. You then condense this vapor and find the mole fraction of benzene in this vapor to be 0.714. Determine the mole fraction of benzene in the original solution assuming the solution behaves ideally.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Designing a Synthesis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
EBK A SMALL SCALE APPROACH TO ORGANIC L
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:
9781305446021
Author:
Lampman
Publisher:
CENGAGE LEARNING - CONSIGNMENT
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Macroscale and Microscale Organic Experiments
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:
9781305577190
Author:
Kenneth L. Williamson, Katherine M. Masters
Publisher:
Brooks Cole