Two gases X and Y are found in the atmosphere in only trace amounts because they decompose quickly. When exposed to ultraviolet light the half-life of X is 105. min, while that of Y is 1.25 h. Suppose an atmospheric scientist studying these decompositions fills a transparent 20.0 L flask with X and Y and exposes the flask to UV light. Initially, the partial pressure of X is 5.0 times greater than the partial pressure of Y. As both gases decompose, will the partial pressure of X ever fall below the partial pressure of Y? If you said yes, calculate the time it takes the partial pressure of X to fall below the partial pressure of Y. Round your answer to 2 significant digits. O yes O no min x10 X 010 S 0 C.

Chemistry for Engineering Students
4th Edition
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Lawrence S. Brown, Tom Holme
Chapter11: Chemical Kinetics
Section: Chapter Questions
Problem 11.91PAE
icon
Related questions
Question
Two gases X and Y are found in the atmosphere in only trace amounts because they decompose quickly. When exposed to ultraviolet light the
half-life of X is 105. min, while that of Y is 1.25 h. Suppose an atmospheric scientist studying these decompositions fills a transparent 20.0 L
flask with X and Y and exposes the flask to UV light. Initially, the partial pressure of X is 5.0 times greater than the partial pressure of Y.
As both gases decompose, will the partial pressure of X ever fall
below the partial pressure of Y?
If you said yes, calculate the time it takes the partial pressure of X
to fall below the partial pressure of Y. Round your answer to 2
significant digits.
yes
no
min
x10
X
=
S
?
Transcribed Image Text:Two gases X and Y are found in the atmosphere in only trace amounts because they decompose quickly. When exposed to ultraviolet light the half-life of X is 105. min, while that of Y is 1.25 h. Suppose an atmospheric scientist studying these decompositions fills a transparent 20.0 L flask with X and Y and exposes the flask to UV light. Initially, the partial pressure of X is 5.0 times greater than the partial pressure of Y. As both gases decompose, will the partial pressure of X ever fall below the partial pressure of Y? If you said yes, calculate the time it takes the partial pressure of X to fall below the partial pressure of Y. Round your answer to 2 significant digits. yes no min x10 X = S ?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Rate Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning