Uniform internal heat generation at q =6.0×10^7 W/m3 is occurring in a cylindrical nuclear reactor fuel rod of 60-mm diameter, and under steady-state conditions the temperature distribution is of the form T\left(r\right)=a+br^2T(r)=a+br2, where T is in degrees Celsius and r is in meters, while a = 900°C and b = -5.26 × 10^5 °C/m^2. The fuel rod properties are k = 30 W/m · K, ρ = 1,100 kg/m^3, and cp = 800 J/kg · K.     (a) What is the rate of heat transfer per unit length of the rod at r = 0 (the centerline) and at r = 30 mm (the surface)?     (b) If the reactor power level is suddenly increased to q2dot = 10^8 W/m^3, what is the initial time rate of temperature change at r = 0 and r = 30 mm?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.45P: 2.45 Heat is transferred from water to air through a brass wall . The addition of rectangular brass...
icon
Related questions
Question
100%

Problem: Conduction related

 

Uniform internal heat generation at q =6.0×10^7 W/m3 is occurring in a cylindrical nuclear reactor fuel rod of 60-mm diameter, and under steady-state conditions the temperature distribution is of the form T\left(r\right)=a+br^2T(r)=a+br2, where T is in degrees Celsius and r is in meters, while a = 900°C and b = -5.26 × 10^5 °C/m^2. The fuel rod properties are k = 30 W/m · K, ρ = 1,100 kg/m^3, and cp = 800 J/kg · K.

 

 

(a) What is the rate of heat transfer per unit length of the rod at r = 0 (the centerline) and at r = 30 mm (the surface)?

 

 

(b) If the reactor power level is suddenly increased to q2dot = 10^8 W/m^3, what is the initial time rate of temperature change at r = 0 and r = 30 mm?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning