Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.45P

Heat is transferred from water to air through a brass wall ( k = 54  W/m K ) . The addition of rectangular brass fins, 0.08 cm thick and 2.5 cm long, spaced 1.25 cm apart, is contemplated. Assuming a water-side heat transfer coefficient of 170  W/m 2  K and an airside heat transfer coefficient of 17  W/m 2 K , compare the gain in heat transfer rate achieved by adding fins to (a) the water side, (b) the air side, and (c) both sides. (Neglect temperature drop through the wall.)

Blurred answer
Students have asked these similar questions
A hot surface at 100°C is to be cooled by attaching 3-cm-long, 0.25-cm-diameter aluminum pin fins (k = 237 W/m·K) to it, with a center-to-center distance of 0.6 cm. The temperature of the surrounding medium is 30°C, and the heat transfer coefficient on the surfaces is 35 W/m2 ·K. Determine the rate of heat transfer from the surface for a 1-m x 1-m section of the plate. Also determine the overall effectiveness of the fins.
Consider a closed cylindrical reactor vessel of diameter D= 1 ft, and length L= 1.5 ft. The surface temperature of the vessel, T1, and the surrounding temperature, T2, are 390 deg. F and 50 deg. F, respectively. The convective heat transfer coefficient, h, between the vessel wall and surrounding fluid is 4.0 Btu/h . ft . ⁰F. Calculate the thermal resistance in ⁰F .h/Btu.
Two pin fins are identical, except that the diameter of one of them is twice the diameter of the other. For which fin is the (a) fin effectiveness and (b) fin efficiency higher? Explain.

Chapter 2 Solutions

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)

Ch. 2 - Prob. 2.16PCh. 2 - Estimate the rate of heat loss per unit length...Ch. 2 - The rate of heat flow per unit length q/L through...Ch. 2 - A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid...Ch. 2 - A cylindrical liquid oxygen (LOX) tank has a...Ch. 2 - Show that the rate of heat conduction per unit...Ch. 2 - Derive an expression for the temperature...Ch. 2 - Heat is generated uniformly in the fuel rod of a...Ch. 2 - 2.29 In a cylindrical fuel rod of a nuclear...Ch. 2 - 2.30 An electrical heater capable of generating...Ch. 2 - A hollow sphere with inner and outer radii of R1...Ch. 2 - 2.34 Show that the temperature distribution in a...Ch. 2 - 2.38 The addition of aluminum fins has been...Ch. 2 - The tip of a soldering iron consists of a 0.6-cm-...Ch. 2 - One end of a 0.3-m-long steel rod is connected to...Ch. 2 - Both ends of a 0.6-cm copper U-shaped rod are...Ch. 2 - 2.42 A circumferential fin of rectangular cross...Ch. 2 - 2.43 A turbine blade 6.3 cm long, with...Ch. 2 - 2.44 To determine the thermal conductivity of a...Ch. 2 - 2.45 Heat is transferred from water to air through...Ch. 2 - 2.46 The wall of a liquid-to-gas heat exchanger...Ch. 2 - Prob. 2.47PCh. 2 - The handle of a ladle used for pouring molten lead...Ch. 2 - 2.50 Compare the rate of heat flow from the bottom...Ch. 2 - 2.51 Determine by means of a flux plot the...Ch. 2 - Prob. 2.52PCh. 2 - Determine the rate of heat transfer per meter...Ch. 2 - Prob. 2.54PCh. 2 - 2.55 A long, 1-cm-diameter electric copper cable...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license