You have a steel ball bearing with a diameter of 1.50 cm (k=40.0 W/(m-K); Density = 7800.0 kg/m^3; and specific heat = 600.0 J/(kg-K)). The ball bearing is initially at a uniform temperature of 1100 K and is then suddenly exposed to convection with a convection temperature of 320.0K and a convection coefficient of 25.0 W/(m2-K). Calculate the following: a) Calculate the time required to cool this ball bearing down to a temperature of 410.0 K. b) Calculate the amount of heat removed from the ball bearing during this cooling process.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.4P: An electrical transmission line of 1.2-cm diameter carries a current of 200 amps and has a...
icon
Related questions
Question

 You have a steel ball bearing with a diameter of 1.50 cm (k=40.0 W/(m-K); Density = 7800.0 kg/m^3; and specific heat = 600.0 J/(kg-K)). The ball bearing is initially at a uniform temperature of 1100 K and is then suddenly exposed to convection with a convection temperature of 320.0K and a convection coefficient of 25.0 W/(m2-K). Calculate the following:


a) Calculate the time required to cool this ball bearing down to a temperature of 410.0 K.


b) Calculate the amount of heat removed from the ball bearing during this cooling process.

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning