A solar sail is made of aluminized Mylar having an emissivity of 0.03 and reflecting 97% of the light that falls on it. Suppose a sail with area 1.00 km2 is oriented so that sunlight falls perpendicular to its surface with an intensity of 1.40 x 103 W/m2. To what temperature will it warm before it emits as much energy (from both sides) by radiation as it absorbs on the sunny side? Assume the sail is so thin that the temperature is uniform and no energy is emitted from the edges. Take the environment to be 0 K.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 74P
icon
Related questions
Question

A solar sail is made of aluminized Mylar having an emissivity of 0.03 and reflecting 97% of the light that falls on it. Suppose a sail with area 1.00 km2 is oriented so that sunlight falls perpendicular to its surface with an intensity of 1.40 x 103 W/m2. To what temperature will it warm before it emits as much energy (from both sides) by radiation as it absorbs on the sunny side? Assume the sail is so thin that the temperature is uniform and no energy is emitted from the edges. Take the environment to be 0 K.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Blackbody
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning