BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643

Solutions

Chapter
Section
BuyFindarrow_forward

Multivariable Calculus

8th Edition
James Stewart
ISBN: 9781305266643
Textbook Problem

Find a vector equation for the tangent line to the curve of intersection of the cylinders x2 + y2 = 25 and y2 + z2 = 20 at the point (3, 4, 2).

To determine

To find: A vector equation for the tangent line to the curve of intersection of the cylinders x2+y2=25 and y2+z2=20 at the point (3,4,2).

Explanation

Formula used:

Write the expression to find the vector equation for the tangent line through the point (x0,y0,z0) and parallel to the vector v=a,b,c.

r(t)tangent line=(x0+at)i+(y0+bt)j+(z0+ct)k (1)

The required tangent line passes through the point (3,4,2) and it is parallel to the tangent vector of the curve.

The tangent vector of the curve is the derivative of the vector function of curve.

Calculation of vector function of the curve r(t):

As the curve C passes through the point of inter section of cylinders x2+y2=25 and y2+z2=20 at the point (3,4,2), the projection of curve C onto the xy-plane is contained in the circle x2+y2=25,z=0 and on the cylinder y2+z2=20,z0 near to the point (3,4,2).

Write the first cylinder equation as follows.

x2+y2=25

Consider x- and y-components of the vector function r(t) such that the considered components should satisfy the cylinder equation x2+y2=25 and consist of scalar parameter t.

x=5costy=5sint

The considered x- and y-components are satisfied the cylinder equation x2+y2=25.

Write the second cylinder equation as follows.

y2+z2=20

Rewrite the expression as follows.

z=20y2

Substitute 5sint for y,

z=20(5sint)2=2025sin2t

From the analysis, the vector function r(t) is written as follows.

r(t)=5cost,5sint,2025sin2t

Calculation of tangent vector r(t):

To find the derivative of the vector function, differentiate each component of the vector function.

Differentiate each component of the vector function r(t)=5cost,5sint,2025sin2t as follows.

ddt[r(t)]=ddt(5cost),ddt(5sint),ddt(2025sin2t)

Use the following formula to compute the expression.

ddt[f(t)]=12f(t)ddt[f(t)]ddtcost=sintddtsint=costddtsin2t=2sintcost

Compute the expression ddt[r(t)]=ddt(5cost),ddt(5sint),ddt(2025sin2t) by using the formulae as follows

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 13 Solutions

Show all chapter solutions add
Sect-13.1 P-11ESect-13.1 P-12ESect-13.1 P-13ESect-13.1 P-14ESect-13.1 P-15ESect-13.1 P-16ESect-13.1 P-17ESect-13.1 P-18ESect-13.1 P-19ESect-13.1 P-20ESect-13.1 P-21ESect-13.1 P-22ESect-13.1 P-23ESect-13.1 P-24ESect-13.1 P-25ESect-13.1 P-26ESect-13.1 P-27ESect-13.1 P-28ESect-13.1 P-29ESect-13.1 P-30ESect-13.1 P-31ESect-13.1 P-32ESect-13.1 P-38ESect-13.1 P-39ESect-13.1 P-40ESect-13.1 P-41ESect-13.1 P-42ESect-13.1 P-43ESect-13.1 P-44ESect-13.1 P-45ESect-13.1 P-46ESect-13.1 P-49ESect-13.1 P-50ESect-13.1 P-53ESect-13.2 P-1ESect-13.2 P-2ESect-13.2 P-3ESect-13.2 P-4ESect-13.2 P-5ESect-13.2 P-6ESect-13.2 P-7ESect-13.2 P-8ESect-13.2 P-9ESect-13.2 P-10ESect-13.2 P-11ESect-13.2 P-12ESect-13.2 P-13ESect-13.2 P-14ESect-13.2 P-15ESect-13.2 P-16ESect-13.2 P-17ESect-13.2 P-18ESect-13.2 P-19ESect-13.2 P-20ESect-13.2 P-21ESect-13.2 P-22ESect-13.2 P-23ESect-13.2 P-24ESect-13.2 P-25ESect-13.2 P-26ESect-13.2 P-27ESect-13.2 P-28ESect-13.2 P-29ESect-13.2 P-30ESect-13.2 P-31ESect-13.2 P-32ESect-13.2 P-33ESect-13.2 P-34ESect-13.2 P-35ESect-13.2 P-36ESect-13.2 P-37ESect-13.2 P-38ESect-13.2 P-39ESect-13.2 P-40ESect-13.2 P-41ESect-13.2 P-42ESect-13.2 P-43ESect-13.2 P-44ESect-13.2 P-45ESect-13.2 P-46ESect-13.2 P-47ESect-13.2 P-48ESect-13.2 P-49ESect-13.2 P-50ESect-13.2 P-51ESect-13.2 P-52ESect-13.2 P-53ESect-13.2 P-54ESect-13.2 P-55ESect-13.2 P-56ESect-13.2 P-57ESect-13.2 P-58ESect-13.3 P-1ESect-13.3 P-2ESect-13.3 P-3ESect-13.3 P-4ESect-13.3 P-5ESect-13.3 P-6ESect-13.3 P-7ESect-13.3 P-8ESect-13.3 P-9ESect-13.3 P-10ESect-13.3 P-11ESect-13.3 P-12ESect-13.3 P-13ESect-13.3 P-14ESect-13.3 P-15ESect-13.3 P-16ESect-13.3 P-17ESect-13.3 P-18ESect-13.3 P-19ESect-13.3 P-20ESect-13.3 P-21ESect-13.3 P-22ESect-13.3 P-23ESect-13.3 P-24ESect-13.3 P-25ESect-13.3 P-26ESect-13.3 P-27ESect-13.3 P-28ESect-13.3 P-29ESect-13.3 P-30ESect-13.3 P-31ESect-13.3 P-32ESect-13.3 P-33ESect-13.3 P-38ESect-13.3 P-39ESect-13.3 P-42ESect-13.3 P-43ESect-13.3 P-44ESect-13.3 P-45ESect-13.3 P-46ESect-13.3 P-47ESect-13.3 P-48ESect-13.3 P-49ESect-13.3 P-50ESect-13.3 P-53ESect-13.3 P-55ESect-13.3 P-56ESect-13.3 P-58ESect-13.3 P-59ESect-13.3 P-60ESect-13.3 P-62ESect-13.3 P-63ESect-13.3 P-64ESect-13.3 P-65ESect-13.3 P-66ESect-13.3 P-67ESect-13.4 P-1ESect-13.4 P-3ESect-13.4 P-4ESect-13.4 P-5ESect-13.4 P-6ESect-13.4 P-7ESect-13.4 P-8ESect-13.4 P-9ESect-13.4 P-10ESect-13.4 P-11ESect-13.4 P-12ESect-13.4 P-13ESect-13.4 P-14ESect-13.4 P-15ESect-13.4 P-16ESect-13.4 P-19ESect-13.4 P-20ESect-13.4 P-21ESect-13.4 P-22ESect-13.4 P-23ESect-13.4 P-24ESect-13.4 P-25ESect-13.4 P-26ESect-13.4 P-27ESect-13.4 P-28ESect-13.4 P-29ESect-13.4 P-30ESect-13.4 P-31ESect-13.4 P-32ESect-13.4 P-34ESect-13.4 P-35ESect-13.4 P-36ESect-13.4 P-37ESect-13.4 P-38ESect-13.4 P-39ESect-13.4 P-40ESect-13.4 P-41ESect-13.4 P-42ESect-13.4 P-44ESect-13.4 P-45ESect-13.4 P-46ECh-13 P-1RCCCh-13 P-2RCCCh-13 P-3RCCCh-13 P-4RCCCh-13 P-5RCCCh-13 P-6RCCCh-13 P-7RCCCh-13 P-8RCCCh-13 P-9RCCCh-13 P-1RQCh-13 P-2RQCh-13 P-3RQCh-13 P-4RQCh-13 P-5RQCh-13 P-6RQCh-13 P-7RQCh-13 P-8RQCh-13 P-9RQCh-13 P-10RQCh-13 P-11RQCh-13 P-12RQCh-13 P-13RQCh-13 P-14RQCh-13 P-1RECh-13 P-2RECh-13 P-3RECh-13 P-4RECh-13 P-5RECh-13 P-6RECh-13 P-7RECh-13 P-8RECh-13 P-9RECh-13 P-10RECh-13 P-11RECh-13 P-12RECh-13 P-13RECh-13 P-14RECh-13 P-15RECh-13 P-16RECh-13 P-17RECh-13 P-18RECh-13 P-19RECh-13 P-20RECh-13 P-21RECh-13 P-22RECh-13 P-23RECh-13 P-1PCh-13 P-2PCh-13 P-3PCh-13 P-4PCh-13 P-5PCh-13 P-6PCh-13 P-7PCh-13 P-8PCh-13 P-9P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Convert the expressions in Exercises 6584 to power form. 23(x2+1)33(x2+1)734

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 9-12, find the domain of the function. f(x)=1x1

Calculus: An Applied Approach (MindTap Course List)

In Exercises 4562, find the values of x that satisfy the inequality (inequalities). 55. (x + 3)(x 5) 0

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Problems 13-24, find the indicated derivative. 16. If

Mathematical Applications for the Management, Life, and Social Sciences

For each vector, find 12V,V, and 4V. V= 2,5

Trigonometry (MindTap Course List)

f(x) = x3 2x2 + x 1 has a local maximum at: a) 0 b) 1 c) 13 d) f has no local maxima

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Describe the characteristics of a good hypothesis and identify examples of good and bad hypotheses.

Research Methods for the Behavioral Sciences (MindTap Course List)