   Chapter 14.5, Problem 13E Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Find the maximum value of w   = x z   +   y subject to the constraint x 2 +   y 2 +   z 2 =   1 .

To determine

To calculate: The maximum value of w=xz+y which is subjected to the constraint x2+y2+z2=1.

Explanation

Given Information:

The provided function is w=xz+y and it is subjected to the constraint x2+y2+z2=1.

Formula used:

Lagrange Multipliers Method:

According to the Lagrange multipliers method to obtain maxima or minima for a function w=f(x,y,z) subject to the constraint g(x,y,z)=0,

Step 1: Find the critical values of f(x,y,z) using the new variable λ to form the objective function F(x,y,z,λ)=f(x,y,z)+λg(x,y,z).

Step 2: The critical points of f(x,y,z) are the critical values of F(x,y,z,λ) which satisfies g(x,y,z)=0.

Step 3: The critical points of F(x,y,z,λ) are the points that satisfy:

Fx=0, Fy=0, Fz=0 and Fλ=0, that is, the points which make all the partial derivatives equal to zero.

For a function f(x,y,z), the partial derivative of f(x,y,z) with respect to y is calculated by taking the derivative of f(x,y,z) with respect to y and keeping the other variables x and z constant. The partial derivative of f(x,y,z) with respect to y is denoted by fy.

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the function, w=xz+y.

The provided constraint is x2+y2+z2=1.

According to the Lagrange multipliers method,

The objective function is F(x,y,z,λ)=f(x,y,z)+λg(x,y,z).

Here, f(x,y,z)=xz+y and g(x,y,z)=x2+y2+z21.

Put the values of f(x,y,z)=xz+y and g(x,y,z)=x2+y2+z21 in the objective function, F(x,y,z,λ)=f(x,y,z)+λg(x,y,z).

F(x,y,z,λ)=xz+y+λ(x2+y2+z21)

Since, the critical points of F(x,y,λ) are the points that satisfy:

Fx=0, Fy=0, Fz=0 and Fλ=0.

Recall that, for a function f(x,y,z), the partial derivative of f(x,y,z) with respect to y is calculated by taking the derivative of f(x,y,z) with respect to y and keeping the other variables x and z constant.

Use the power of x rule for derivatives, the constant function rule and the coefficient rule.

The objective function is F(x,y,z,λ)=xz+y+λ(x2+y2+z21),

Fx=0z+λ(2x)=02xλ=zλ=z2x

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Change65mi/htom/s.

Elementary Technical Mathematics

Evaluate the indefinite integral. xx2+4dx

Single Variable Calculus: Early Transcendentals

True or False: The graph in question 3 has a vertical asymptote at x = 1.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th 