BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: Early Transcendentals

8th Edition
James Stewart
ISBN: 9781285741550
Textbook Problem

Solve the differential equation using the method of variation of parameters.

23. y" + y = sec2x, 0 < x < π/2

To determine

To solve: The differential equation by using method of variation of parameters.

Explanation

Given data:

The differential equation is,

y+y=sec2x,0<x<π2 (1)

Consider the auxiliary equation.

r2+1=0 (2)

Roots of equation (2) are,

r=0±(0)24(1)(1)2(1){r=b±b24ac2afortheequationofar2+br+c=0}=±2i2=±i

Write the expression for the complementary solution for the complex roots.

yc(x)=eαx(c1cosβx+c2sinβx)

Substitute 0 for α and 1 for β ,

yc(x)=e0x(c1cos1x+c2sin1x)

yc(x)=c1cosx+c2sinx (3)

Set y1=sinx and y2=cosx .

Calculate y1y2y2y1 .

y1y2y2y1=sinxd(cosx)dxcosxd(sinx)dx=sinx(sinx)cosxcosx=sin2xcos2x=(sin2x+cos2x){sin2x+cos2x=1}

y1y2y2y1=1

Write the expression to find the arbitrary function u1 .

u1=G(x)y2y1y2y2y1

Here,

G(x) is the expression for R.H.S of differential equation in (1),

Substitute sec2x for G(x) , cosx for y2 , and 1 for y1y2y2y1 ,

u1=sec2xcosx1=sec2x1secx1 {cosx=1secx}=secx

Integrate on both sides of the equation.

u1=secxdxu1(x)=ln(secx+tanx)for0<x<π2

Write the expression to find the arbitrary function u2

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 17 Solutions

Show all chapter solutions add
Sect-17.1 P-11ESect-17.1 P-12ESect-17.1 P-13ESect-17.1 P-14ESect-17.1 P-15ESect-17.1 P-16ESect-17.1 P-17ESect-17.1 P-18ESect-17.1 P-19ESect-17.1 P-20ESect-17.1 P-21ESect-17.1 P-22ESect-17.1 P-23ESect-17.1 P-24ESect-17.1 P-25ESect-17.1 P-26ESect-17.1 P-27ESect-17.1 P-28ESect-17.1 P-29ESect-17.1 P-30ESect-17.1 P-31ESect-17.1 P-32ESect-17.1 P-33ESect-17.1 P-34ESect-17.2 P-1ESect-17.2 P-2ESect-17.2 P-3ESect-17.2 P-4ESect-17.2 P-5ESect-17.2 P-6ESect-17.2 P-7ESect-17.2 P-8ESect-17.2 P-9ESect-17.2 P-10ESect-17.2 P-11ESect-17.2 P-12ESect-17.2 P-13ESect-17.2 P-14ESect-17.2 P-15ESect-17.2 P-16ESect-17.2 P-17ESect-17.2 P-18ESect-17.2 P-19ESect-17.2 P-20ESect-17.2 P-21ESect-17.2 P-22ESect-17.2 P-23ESect-17.2 P-24ESect-17.2 P-25ESect-17.2 P-26ESect-17.2 P-27ESect-17.2 P-28ESect-17.3 P-1ESect-17.3 P-2ESect-17.3 P-3ESect-17.3 P-4ESect-17.3 P-5ESect-17.3 P-6ESect-17.3 P-7ESect-17.3 P-8ESect-17.3 P-9ESect-17.3 P-10ESect-17.3 P-11ESect-17.3 P-12ESect-17.3 P-13ESect-17.3 P-14ESect-17.3 P-15ESect-17.3 P-16ESect-17.3 P-17ESect-17.3 P-18ESect-17.4 P-1ESect-17.4 P-2ESect-17.4 P-3ESect-17.4 P-4ESect-17.4 P-5ESect-17.4 P-6ESect-17.4 P-7ESect-17.4 P-8ESect-17.4 P-9ESect-17.4 P-10ESect-17.4 P-11ESect-17.4 P-12ECh-17 P-1RCCCh-17 P-2RCCCh-17 P-3RCCCh-17 P-4RCCCh-17 P-5RCCCh-17 P-1RQCh-17 P-2RQCh-17 P-3RQCh-17 P-4RQCh-17 P-1RECh-17 P-2RECh-17 P-3RECh-17 P-4RECh-17 P-5RECh-17 P-6RECh-17 P-7RECh-17 P-8RECh-17 P-9RECh-17 P-10RECh-17 P-11RECh-17 P-12RECh-17 P-13RECh-17 P-14RECh-17 P-15RECh-17 P-16RECh-17 P-17RECh-17 P-18RECh-17 P-19RECh-17 P-20RECh-17 P-21RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Convert the expressions in Exercises 6584 to power form. 23x1.2x2.13

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 7-12, solve for y in terms of x. 5y6x21=0

Calculus: An Applied Approach (MindTap Course List)

In Exercises 63-68, rationalize the denominator. 67. 1x3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In problems 23-58, perform the indicated operations and simplify. (x5+5x7)(x+1)

Mathematical Applications for the Management, Life, and Social Sciences

For the continuous function at the right and the given value N, how many points c satisfy the conclusion of the...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or false:

Study Guide for Stewart's Multivariable Calculus, 8th