An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough such that any person inside is held up against the wall when the floor drops away (Fig. P6.65). The coefficient of static friction between person and wall is μs, and the radius of the cylinder is R. (a) Show that the maximum period of revolution necessary to keep the person from falling is T = (4π2Rμs/g)½ (b) Obtain a numerical value for T if R = 4.00 m and μs = 0.400. How many revolutions per minute does the cylinder make?

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter9: Dynamics Of A System Of Particles
Section: Chapter Questions
Problem 9.62P
icon
Related questions
Question

An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough such that any person inside is held up against the wall when the floor drops away (Fig. P6.65). The coefficient of static friction between person and wall is μs, and the radius of the cylinder is R. (a) Show that the maximum period of revolution necessary to keep the person from falling is T = (4π2s/g)½ (b) Obtain a numerical value for T if R = 4.00 m and μs = 0.400. How many revolutions per minute does the cylinder make?

 width=

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Centripetal force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning