The Hydroxyl group on alcohols relates to their reactivity. This concept was explored by answering the question “Does each alcohol undergo halogenation and controlled oxidation?” . Using three isomers of butanol; the primary 1-butanol, the secondary 2-butanol and the tertiary 2-methyl-2-propanol, also referred to as T-butanol, two experiments were performed to test the capabilities of the alcohols. When mixed with hydrochloric acid in a glass test tube, the primary alcohol and secondary alcohols were expected to halogenate, however the secondary and tertiary ended up doing so. This may have been because of the orientation of the Hydroxyl group when butanol is in a different
During the halogenation reactions of 1-butanol, 2-butanol, and 2-methyl-2-propanol, there is a formation of water from the OH atom of the alcohol, and the H atom from the HCl solution. The OH bond of the alcohol is then substituted with the Cl atom. Therefore all of the degrees of alcohol undergo halogenation reactions, and form alkyl halides as products. This is because the functional group of alkyl halides is a carbon-halogen bond. A common halogen is chlorine, as used in this experiment.
The Grignard reaction is an important synthetic process by which a new carbon to carbon bond is formed. Magnesium metal is first reacted with an organic halide forming the Grignard reagent. The Grignard reaction is the addition of an organomagnesium halide (Grignard reagent) to a ketone or aldehyde, to form a tertiary or secondary alcohol, respectively. For example, the reaction with formaldehyde leads to a primary alcohol. Grignard Reagents are also used in the following important reactions: The addition of an excess of a Grignard reagent to an ester or lactone gives a tertiary alcohol in which two alkyl groups are the same, and the addition of a
The products of interest within this experiment are 2-methyl-1-butene and 2-methyl-2-butene from sulfuric acid and phosphoric acid catalyzed dehydration of 2-methyl-2-butanol. The reaction mixture was then separated into its separate alkene components by steam distillation and then analyzed by gas chromatography (GC), Infrared Radiation (IR) spectroscopy, and Nuclear Magnetic Resonance (NMR) imaging. Gas chromatography is an analytical technique that is able to characterize if specific compounds exist in a reaction mixture, even if they are in low quantities, assess how much of a compound exists within a reaction mixture relative to other components within the sample, and determine the purity of an isolated product. In the case of this experiment, gas chromatography is used to analyze how pure the alkene reaction sample was and if any remnants of impurities or 2-methyl-2-butanol remained in the sample after isolation of alkene components.
Abstract: Using hypochlorous acid to convert secondary alcohol called cyclododecanol to the corresponding ketone which is cyclododecanone by oxidation.
In the Cannizaro reaction an aldehyde is simultaneously reduced into its primary alcohol form and also oxidized into it 's carboxylic acid form. The purpose of this experiment is to isolate, purify and identify compounds 1 and 2 which contain 4-chlorobenzaldehyde, methanol, and aqueous potassium hydroxide. Compounds 1 and 2 are purified by crystallization. . The purified product will be characterized by IR spectroscopy and melting point.
The objective of this lab was to create a ketone through an oxidation reaction using a using a secondary alcohol and oxidizing agent in order to use that ketone in a reduction reaction with a specific reducing agent to determine the affect of that reducing agent on the diastereoselectivity of the product. In the first part of this experiment, 4-tert-butylcyclohexanol was reacted with NaOCl, an oxidizing agent, and acetic acid to form 4-tert-butylcyclohexanone. In the second part of this experiment, 4-tert-butylcyclohexanone was reacted with a reducing agent, either NaBH4 in EtOH or Al(OiPr)3 in iPrOH, to form the product 4-tert-butylcyclohexanol. 1H NMR spectroscopy was used to determine the cis:trans ratio of the OH relative to the tert-butyl group in the product formed from the reduction reaction with each reducing agent. Thin-layer chromatography was used in both the oxidation and reduction steps to ensure that each reaction ran to completion.
Grignard reagents cannot be synthesized from alcohols because instead of reacting with the halide to form the Grignard reagent, the alcohol is deprotenated. Grignard reagents also cannot be synthesized from molecules with a carbonyl group.
The carbon-carbon double bond of alkenes represents a site that has a high electron intensity. This site is susceptible to oxidation. Depending on the conditions or reagents used to initiate the oxidation of alkenes, various products can be obtained. With relative mild oxidation, it is only the pi bond of an alkene that is cleaved resulting in the production of 1,2-diols or epoxides. However, when there is more vigorous
In this experiment, the main objective was to synthesize a ketone from borneol via an oxidation reaction and secondly, to produce a secondary alcohol from camphor via a reduction reaction. Therefore, the hypothesis of this lab is that camphor will be produced in the oxidation reaction and isoborneol will be the product of the reduction reaction because of steric hindrance. For the oxidation step, a reflux will be done and then a microscale reflux for the reduction step. The products will be confirmed using Infrared spectroscopy, the chromic acid test, 2,4-DNP test and 13C NMR spectroscopy. The results of this
After 10 minutes the reaction liquid was separated from the solid using a vacuum filtration system and toluene. The product was stored and dried until week 2 of the experiment. The product was weighed to be 0.31 g. Percent yield was calculated to be 38.75%. IR spectra data was conducted for the two starting materials and of the product. Melting point determination was performed on the product and proton NMR spectrum was given. The IR spectrum revealed peaks at 1720 cm-1, which indicated the presence of a lactone group, and 1730 cm-1, representing a functional group of a carboxylic acid (C=O), and 3300cm-1, indicating the presence of an alcohol group (O-H). All three peaks correspond with the desired product. A second TLC using the same mobile and stationary phase as the first was performed and revealed Rf Values of 0.17 and 0.43for the product. The first value was unique to the product indicating that the Diels-Alder reaction was successful. The other Rf value of 0.43 matched that of maleic anhydride indicating some
Through the use of the Grignard reaction, a carbon-carbon bond was formed, thereby resulting in the formation of triphenylmethanol from phenyl magnesium bromide and benzophenone. A recrystallization was performed to purify the Grignard product by dissolving the product in methanol. From here, a melting point range of 147.0 °C to 150.8 °C was obtained. The purified product yielded an IR spectrum with major peaks of 3471.82 cm-1, 3060.90 cm-1, 1597.38 cm-1, and 1489.64 cm-1, which helped to testify whether the identity of the product matched the expected triphenylmethanol. The identity of the product being correct was further confirmed by way of both proton and carbon-13 NMR spectra. This is due to the fact
An ester was synthesized during an organic reaction and identified by IR spectroscopy and boiling point. Acetic acid was added to 4-methyl-2-pentanol, which was catalyzed by sulfuric acid. This produced the desired ester and water. After the ester was isolated a percent yield of 55.1% was calculated from the 0.872 g of ester recovered. This quantitative error was most likely due to product getting stuck in the apparatus. The boiling point of the ester was 143° C, only one degree off from the theoretical boiling point of the ester 1,3-dimethylbutyl, 144 ° C. The values of the
The overall goal in this lab was to oxidize borneol, a secondary alcohol, into camphor, which is a ketone. For the purposes of oxidation chromic acid was utilized, which was prepared by adding a 1:1 ratio of chromium trioxide to dilute sulfuric acid.
In this experiment, an unknown Grignard reagent was prepared from an aryl halide. The unknown reagent was then reacted with carbon dioxide to form a carboxylic acid. The solid acid was then isolated and recrystallized before the melting point was taken. The precipitate was then dissolved in water and titrated to determine the molecular weight. The melting point and molecular weight were then used to determine the unknown acid obtained from the experiment.