The Heart Attack Study Data And R Studio Software

2084 Words Nov 21st, 2016 9 Pages
This study utilized the Worchester Heart Attack Study data and R Studio software to predict the mortality factors for heart attack patients. The medical data include physiological measurements about heart attack patients, which serve as the independent variables, such as the heart rate, blood pressure, atria fibrillation, body mass index, cardiovascular history, and other medical signs. This study employed the techniques of supervised learning and unsupervised learning algorithms, using classification decision trees and k-means clustering, respectively. In addition to performing initial descriptive statistics to estimate the general range of critical factors correlated with heart attack patients, R Studio was used to determine the weight of each of the significant factors on the prediction in order to quantify its influence on the death of heart attack patients. Furthermore, the software was used to evaluate the accuracy of the predicted model to estimate death of heart attack patients by using a confusion matrix to compare predictions with actual data. Finally, this study reflected on the effectiveness of the data mining software conclusions, compared supervised learning and unsupervised learning, and conjectured improvements for future data mining investigations. The primary objective of this study is to apply data mining concepts to analyze medical data associated with heart attack patients and highlight the medical factors that are strongly correlated with patient…

More about The Heart Attack Study Data And R Studio Software

Open Document