1.A.)A semi-cylindrical concrete structure having a radius of 5 m and length of 3 m is rested on ground. Wind (air having a density ρ=1,2 kg/m3 ) at a free-sream speed of 3 m/s with an atmospheric pressure of 100 kPa far upstream the structure blows over the structure. The air entrance to the structure is at ground level corresponding to the forward stagnation point . Determine the magnitude of pressure at ground level in terms of gage .Assume flow potential ANSWER: 5,4 Pa

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

1.A.)A semi-cylindrical concrete structure having a radius of 5 m and length of 3 m is rested on ground. Wind (air having a density ρ=1,2 kg/m3 ) at a free-sream speed of 3 m/s with an atmospheric pressure of 100 kPa far upstream the structure blows over the structure. The air entrance to the structure is at ground level corresponding to the forward stagnation point . Determine the magnitude of pressure at ground level in terms of gage .Assume flow potential

ANSWER: 5,4 Pa

1.B.)A semi-cylindrical concrete structure having a radius of 5 m and length of 3 m is rested on ground. Wind (air having a density ρ=1,2 kg/m3 ) at a free-sream speed of 3 m/s with an atmospheric pressure of 100 kPa far upstream the structure blows over the structure. The air entrance to the structure is at ground level corresponding to the forward stagnation point . Since the magnitude of minimum pressure is acting on the top of the structure determine the magnitude of lift force due to the pressure difference in vertical direction .Assume flow potential

ANSWER: 648 N

1.C.)A semi-cylindrical concrete structure having a radius of 5 m and length of 3 m is rested on ground. Wind (air having a density ρ=1,2 kg/m3 ) at a free-sream speed of 3 m/s with an atmospheric pressure of 100 kPa far upstream the structure blows over the structure. The air entrance to the structure is at ground level corresponding to the forward stagnation point and the magnitude of minimum pressure is acting on the top of the structure a lift force is generated. Estimate the lift coefficient C L =? with calculated magnitude of lift force from potential flow theory

ANSWER: 4

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY