2 The local stability of the solutions In this section, the local stability of the solutions of Eq.(1.1) is investigated. The equilibrium point y of Eq.(1.1) is the positive solution of the equation Then, the only positive equilibrium point y of Eq. (1.1) is given by i=1 ai 5 (1 1 – A) ( Σ₁-1 ³i) i=1 provided that A < 1. Now, let us introduce a continuous function H: (0, ∞)6 (0, ∞) which is defined by Therefore, it follows that H(uo,...,us) Juz y = Aỹ + H(uo,..., u5) = Auo + H(uo,...,us) ?u1 ән (ў.....у) duz y = Consequently, we get 5 Σ₁=1 αi 5 Bi i=1 = 8H(y....,y) Ous a2 = H(uo,...,us) 03 [Σ²=1(B₁¹₁)+Σi=4(B;¹₁)] − B3 [Σ²_1(0₂¹₂)+Σi=4(α{U₂)] (Σ=1(Btu.))* duz H(uo,...,us) дио H(uo,...,u5) a4 [Ci=1(B₁¹₁)+35u5] − B4 [Σi=1(α₁¹₁)+a5u5] (Σ=1(βtu.))" Jus H(uo,...,u5) 05 ?us OH(ỹ,....) dus Σ=1(aiui) Σi=1(B₁U₂) = = A, α₁ [Ci=2(B₁¹i)] − B₁ [Σi=2(α;¹¹i)] (i=1(Biui))² [8₁41+Ci=3(B(U₁)] - B2 [a10₁+Σi=3(α{U₁)], (Σ=1(Btu.))* ƏH (у....,y) (1-A)[αι ( Σ2β) – βι ( Σα;)] (Σ=1 )( Σπιβ;) du [Σ1(βικι)] – β [Σ=1(au)] (Σ=1(Btu.))* 8H (y.....y) (1-A) [a2 (81+=3³₁) - B₂ (α1+ Σi=3a₁)] (Σ= α)( Σπι βι) duz OH() = A= - P5, дио = - P4, (1−A)[03 ( Σ²=1 ³₁+Σ₁_₁³₁) - B3 (Σ² = 1 0₁+ [₁=49₁)] (Σ=1 at)( Σ=1β) (1-A) [a4 (85 +₁=1 ßt) — 34 (as+ Σi-3 ai)] ( Σ=1 at)( Σ=1 βι) (1-A)[as (Σί=1 βι) – β (Σ=1 αι)] ( Στα)( Σπιβι) = P3, (2.7) = P1, = - Po. (2.8) = P2, (2.9) Hence, the linearized equation of Eq. (1.1) about y takes the form Ym+1+P5Ym+P4Ym-1+P3Ym-2+P2ym-3+P1Ym-4+Poym-5 = 0, (2.10) where po, P1, P2, P3, P4 and ps are given by (2.9). The characteristic equation associated with Eq. (2.10) is 16+p515 + P₁14 + P3√³+p₂√² + p₁λ + po = 0₁ (2.11) (2.6)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

Explain the determine red

2 The local stability of the solutions
In this section, the local stability of the solutions of Eq.(1.1) is investigated.
The equilibrium point ỹ of Eq.(1.1) is the positive solution of the equation
i=1
ỹ = Aỹ +
(2.6)
E-1 Bi
Then, the only positive equilibrium point ỹ of Eq.(1.1) is given by
Li=1
(2.7)
(1 – A) ( E)
55
provided that A < 1. Nơw, let us introduce a continuous function
(0, 0)6 → (0, ∞) which is defined by
H :
H(uo, ..., u5) = Auo +
(2.8)
Therefore, it follows that
H(u0,...,u5)
= A,
H(u0,...,us)
a1 E(B;u;)] – B1 [E2la;u;)]
H(uo,...,u5)
H(uo,...,u5)
duz
H(u0,...,u5)
a4 (E-1(Biu;)+Bsus] – Ba [Ei-1(asu;)+agus]
H(u0,...,u5)
Əug
a5
Consequently, we get
8H(ỹ,.î) = A=- P5,
duo
(1–4)[a1 ( , Bi) – B1 (Ea)]
= - P4,
(1-A)[a2 ( Bi+E-3 81) - B2 (an+ Eia)]
= - P3,
duz
(1–A)[a3 ( E1 B+E4 Bi) – Ba (E, 0+ E,a)]
= - P2,
duz
(1-A)[a4 (Bs +E, ) – Ba (as+ E- as)]
=- P1,
du4
(1-A)[as (E, B,) – Bs (EiL, a1)]
( E4)( E-1 8.)
= - Po.
(2.9)
Hence, the linearized equation of Eq.(1.1) about ỹ takes the form
Ym+1+P5Ym +P4Ym–1+P3Ym-2+P2Ym-3+pıym-4+ PoYm-5 = 0,
(2.10)
where po, p1, P2, P3, P4 and p5 are given by (2.9).
The characteristic equation associated with Eq.(2.10) is
18 + psd5+ paXª + p3d3 + p2X² + pid + po = 0,
(2.11)
Transcribed Image Text:2 The local stability of the solutions In this section, the local stability of the solutions of Eq.(1.1) is investigated. The equilibrium point ỹ of Eq.(1.1) is the positive solution of the equation i=1 ỹ = Aỹ + (2.6) E-1 Bi Then, the only positive equilibrium point ỹ of Eq.(1.1) is given by Li=1 (2.7) (1 – A) ( E) 55 provided that A < 1. Nơw, let us introduce a continuous function (0, 0)6 → (0, ∞) which is defined by H : H(uo, ..., u5) = Auo + (2.8) Therefore, it follows that H(u0,...,u5) = A, H(u0,...,us) a1 E(B;u;)] – B1 [E2la;u;)] H(uo,...,u5) H(uo,...,u5) duz H(u0,...,u5) a4 (E-1(Biu;)+Bsus] – Ba [Ei-1(asu;)+agus] H(u0,...,u5) Əug a5 Consequently, we get 8H(ỹ,.î) = A=- P5, duo (1–4)[a1 ( , Bi) – B1 (Ea)] = - P4, (1-A)[a2 ( Bi+E-3 81) - B2 (an+ Eia)] = - P3, duz (1–A)[a3 ( E1 B+E4 Bi) – Ba (E, 0+ E,a)] = - P2, duz (1-A)[a4 (Bs +E, ) – Ba (as+ E- as)] =- P1, du4 (1-A)[as (E, B,) – Bs (EiL, a1)] ( E4)( E-1 8.) = - Po. (2.9) Hence, the linearized equation of Eq.(1.1) about ỹ takes the form Ym+1+P5Ym +P4Ym–1+P3Ym-2+P2Ym-3+pıym-4+ PoYm-5 = 0, (2.10) where po, p1, P2, P3, P4 and p5 are given by (2.9). The characteristic equation associated with Eq.(2.10) is 18 + psd5+ paXª + p3d3 + p2X² + pid + po = 0, (2.11)
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,