

Want to see the full answer?
Check out a sample Q&A here


Related Calculus Q&A
Find answers to questions asked by students like you.
Q:Ā dx 2+ Vx-4
A:Ā Note: -Ā Since you have asked multiple questions, we will solve the first question for you. If youā¦
Q:Ā d (e) -[3r + 2n*) = 15x* + 873 %3D dx
A:Ā Click to see the answer
Q:Ā Ń 2 ā Š±Ń + 9 dx Š£Š±Ń ā Ń 2
A:Ā Click to see the answer
Q:Ā dx (x2 - 169) 3/2 *> 13
A:Ā Use the trigonometric substitution and simplify the integration than solve it.
Q:Ā Vx2 (b) / 4 dx; x > 2. x2
A:Ā To find out the integration.
Q:Ā 2x-5 dx 73
A:Ā Click to see the answer
Q: 1 dx /9x² + 4
A:Ā Click to see the answer
Q:Ā [(2x -1)3ā x )dx = + 8. 0 3.
A:Ā Click to see the answer
Q:Ā 1 dx 4x 12 /-
A:Ā OurĀ AimĀ isĀ toĀ integrateĀ ā«2314xdxĀ -(i)
Q:Ā (ć”+4) dx x2 + 2x+5
A:Ā Integration is summation of discrete data. The integral is calculated for the functions to findā¦
Q:Ā 2x dx (x*-16)
A:Ā Click to see the answer
Q:Ā ćÆć”- 2 dx +2x +17
A:Ā GivenĀ thatĀ ā«033x-2x2+2x+17dxSolutionĀ :Ā putĀ 3x-2=Addxx2+2x+17+B3x-2=A2x+2+Bputā¦
Q:Ā dx 4. 8 + 2r2
A:Ā The solution of the problem is given in the next step.
Q:Ā 2 X 1 dx -2 4
A:Ā Let's see a formula of integration. ā«a2-x2Ā dxĀ =Ā x2a2-x2Ā +Ā a22sin-1xaĀ +Ā C We use this formula toā¦
Q: 8. fx(1+x)²/³ d dx 2/3
A:Ā SOLUTION-
Q:Ā [2x] dx -1
A:Ā If givenĀ Integral can be solved using fundamental theorem of calculus.
Q: 6. dx (x2 + 2x + 2)²
A:Ā Click to see the answer
Q:Ā ć”ć”ć¼ć dx ćć” 2x+3
A:Ā Click to see the answer
Q:Ā -4 6. |a + 3|dx ā 1)³ydy -1
A:Ā Click to see the answer
Q:Ā äŗ 2x - 7 dx x* +9 5.
A:Ā the given integral is: ā«2x-7x2+9dx we have to evaluate the given integral.
Q: Evalvate 5x-12 X (x²+4) dx
A:Ā Click to see the answer
Q: - dx x² +16
A:Ā Topic:- Integration
Q:Ā dx 3 (2ćŗ-4x-1
A:Ā Here we substitution method to solve this integration
Q:Ā dx 2x -1
A:Ā Click to see the answer
Q:Ā 7 x'dx 2
A:Ā Click to see the answer
Q:Ā Evaluate the integral.
A:Ā Consider the following integral:ā¦
Q:Ā 2 dx 8x + 9
A:Ā To find the value of given integrationĀ We use some basic results of integration and substitution
Q:Ā 3 9x + 4x -dx- 4 9 + 4r
A:Ā Click to see the answer
Q:Ā 1 dx xVx² ā 9
A:Ā Click to see the answer
Q:Ā dx 4. Jćć-6x+13
A:Ā 4. Given integral:
Q:Ā 2x -edy+alye -x) dx
A:Ā Click to see the answer
Q:Ā 2x dx 67. 4
A:Ā ā«xnĀ dxĀ =Ā xn+1n+1+C ā«f(x) ± g(x)Ā dxĀ =Ā ā«f(x)Ā dx ±ā«g(x)Ā dx ā«aĀ f(x)Ā dxĀ =aā«f(x)Ā dx
Q:Ā (2x2-x+6)dx (Ń 2āŃ -2))
A:Ā Click to see the answer
Q: Vx² - 2x + 3 dx
A:Ā Click to see the answer
Q:Ā |x + 2| dx -4
A:Ā Click to see the answer
Q: 3x² + 2x t 3 dx 㨠20
A:Ā Click to see the answer
Q:Ā -3 12 dx /5x+1
A:Ā Basic rules of integration are required.
Q:Ā 20 dx -1 ŠŠµ2Ń
A:Ā Click to see the answer
Q: dx 9. (4-x²)3/2
A:Ā Solution 9.ā«dx(4-x2)32
Q:Ā -7 dx Vx-9 3
A:Ā Click to see the answer
Q:Ā Vx - 2 dx 5 x + 1)
A:Ā Click to see the answer
Q:Ā -2//3 dx 28. xVx² ā 1
A:Ā Solve this question by the substitution method: also you will need this in future:
Q: 2 dx xVx ² -1
A:Ā WeĀ knowĀ thatĀ theĀ ddxarcĀ secx=1xx2-1thenā«1xx2-1dx=arcĀ secx
Q:Ā dx 3+5x 2.
A:Ā Click to see the answer
Q:Ā +ć§-4 dx x2 +2
A:Ā Click to see the answer
Q:Ā dx 1. V1-4x 1ā 4x²
A:Ā Click to see the answer
Q:Ā -10 dx - 25 XVx2
A:Ā we have to find integration
Q:Ā dx (1+8x) 2
A:Ā Click to see the answer
Q:Ā -2 Ń 6. dx 1-x
A:Ā Topic = Integration useĀ ā«1xdx=lnx+ClnxāxĀ isĀ NOTĀ definedĀ forĀ negativeĀ valuesĀ ofĀ theĀ independentā¦









