The boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196 °C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196 °C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm.   Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196 °C. The tank is exposed to ambient air at 15° C, with a combined convection and radiation heat transfer coefficient of 35 W/m2⋅K. The temperature of the thin-shelled spherical tank is observed to be almost the

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter28: Special Refrigeration Applications
Section: Chapter Questions
Problem 2RQ
icon
Related questions
Question

The boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196 °C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196 °C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm.

 

Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196 °C. The tank is exposed to ambient air at 15° C, with a combined convection and radiation heat transfer coefficient of 35 W/m2⋅K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation (in kg/s) of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air if the tank is insulated with 5-cm-thick fiberglass insulation (k = 0.035 W/m⋅K).

N2 vapor
Tair = 15°C
1 atm
Liquid N2
-196°C
Insulation
Transcribed Image Text:N2 vapor Tair = 15°C 1 atm Liquid N2 -196°C Insulation
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning