A 1.0 m * 1.5 m double-pane window consists of two 4-mm-thick layers of glass (k = 0.78 W/m·K) that are separated by a 5-mm air gap (kair = 0.025 W/m·K). The heat flow through the air gap is assumed to be by conduction. The inside and outside air temperatures are 20°C and 220°C, respectively, and the inside and outside heat transfer coefficients are 40 and 20 W/m2·K. Determine (a) the daily rate of heat loss through the window in steady operation and (b) the temperature difference across the largest thermal resistance.

College Physics
10th Edition
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter11: Energy In Thermal Processes
Section: Chapter Questions
Problem 40P: The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about...
icon
Related questions
icon
Concept explainers
Question

A 1.0 m * 1.5 m double-pane window consists of
two 4-mm-thick layers of glass (k = 0.78 W/m·K) that are
separated by a 5-mm air gap (kair = 0.025 W/m·K). The heat
flow through the air gap is assumed to be by conduction.
The inside and outside air temperatures are 20°C and
220°C, respectively, and the inside and outside heat transfer
coefficients are 40 and 20 W/m2·K. Determine (a) the
daily rate of heat loss through the window in steady operation
and (b) the temperature difference across the largest
thermal resistance.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax