A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block and then compresses a spring. (a) Determine the potential energy of the spring when it is compressed by 1.00 m. A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a maximum of 1.00 m. (b) Determine the velocity of the block once the bullet is embedded, just before it starts to compress the spring.  A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a maximum of 1.00 cm.  (d) Determine the speed of the bullet at impact with the block.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter8: Momentum And Collisions
Section: Chapter Questions
Problem 7P: Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is...
icon
Related questions
Question

A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block and then compresses a spring. (a) Determine the potential energy of the spring when it is compressed by 1.00 m.

A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a maximum of 1.00 m. (b) Determine the velocity of the block once the bullet is embedded, just before it starts to compress the spring. 

A 18.0 g bullet is fired horizontally into a 109 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 122 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a maximum of 1.00 cm.  (d) Determine the speed of the bullet at impact with the block.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Helmholtz Free energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning