(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 108 m as the average Earth- Moon distance and 2.36 x 106 s as the period of the Moon in its orbit. (Use 7.36 x 1022 kg for the mass of the moon.) 2.889e34 ✓kg-m²/s (b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nh) determine the value of the quantum number, n. 8.463e67 X Your response differs from the correct answer by more than 10%. Double check your calculations. (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter11: Gravity, Planetary Orbits, And The Hydrogen Atom
Section: Chapter Questions
Problem 41P
icon
Related questions
Question
(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 10⁰ m as the average Earth-
Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.)
2.889e34
kg. m²/s
(b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nħ) determine the value of the quantum number, n.
8.463e67
Your response differs from the correct answer by more than 10%. Double check your calculations.
(c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1?
2.3632e-6 X
Your response differs from the correct answer by more than 100%.
Transcribed Image Text:(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 10⁰ m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) 2.889e34 kg. m²/s (b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nħ) determine the value of the quantum number, n. 8.463e67 Your response differs from the correct answer by more than 10%. Double check your calculations. (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 2.3632e-6 X Your response differs from the correct answer by more than 100%.
Expert Solution
steps

Step by step

Solved in 5 steps with 7 images

Blurred answer
Knowledge Booster
Hydrogen Atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax