A cockroach of mass m lies on the rim of a uniform disk of mass 9.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.455 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy? (a) w = rad/s (b) K/Ko = This answer has no units v

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter11: Angular Momentum
Section: Chapter Questions
Problem 59P: A bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M=0.10kg,R=0.10m)...
icon
Related questions
icon
Concept explainers
Question
Chapter 11, Problem 052 GO
2 Your answer is partially correct. Try again.
A cockroach of mass m lies on the rim of a uniform disk of mass 9.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk
rotate together with an angular velocity of 0.455 rad/s. Then the cockroach walks halfway to the center of the disk.
(a) What then is the angular velocity of the cockroach-disk system?
(b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy?
(a) w =
rad/s
(b) K/Ko =
This answer has no units
Click if you would like to Show Work for this question: Open Show Work
Transcribed Image Text:Chapter 11, Problem 052 GO 2 Your answer is partially correct. Try again. A cockroach of mass m lies on the rim of a uniform disk of mass 9.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.455 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy? (a) w = rad/s (b) K/Ko = This answer has no units Click if you would like to Show Work for this question: Open Show Work
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning