A horizontal spring attached to a wall has a force constant of k = 830 N/m. A block of mass m = 1.40 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. wiwwww. x= 0 x= x/2 x= x, (a) The block is pulled to a position x, = 6.60 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.60 cm from equilibrium. 2.91 10 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J (b) Find the speed of the block as it passes through the equilibrium position. 6.45 Your response differs from the correct answer by more than 100%. m/s (c) What is the speed of the block when it is at a position x/2 = 3.30 cm? 5.58 Your response differs from the correct answer by more than 100%, m/s

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Conservation Of Energy
Section: Chapter Questions
Problem 55P: A horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00...
icon
Related questions
icon
Concept explainers
Question
A horizontal spring attached to a wall has a force constant of k = 830 N/m. A block of mass m = 1.40 kg is attached to the spring and rests on a frictionless,
horizontal surface as in the figure below.
wiwwwww.
x= 0
x = x;/2
x= X;
(a) The block is pulled to a position x; = 6.60 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.60 cm
from equilibrium.
2.91*10**- >X
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
(b) Find the speed of the block as it passes through the equilibrium position.
6.45
Your response differs from the correct answer by more than 100%. m/s
(c) What is the speed of the block when it is at a position x/2
3.30 cm?
5.58
Your response differs from the correct answer by more than 100%. m/s
Transcribed Image Text:A horizontal spring attached to a wall has a force constant of k = 830 N/m. A block of mass m = 1.40 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. wiwwwww. x= 0 x = x;/2 x= X; (a) The block is pulled to a position x; = 6.60 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.60 cm from equilibrium. 2.91*10**- >X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J (b) Find the speed of the block as it passes through the equilibrium position. 6.45 Your response differs from the correct answer by more than 100%. m/s (c) What is the speed of the block when it is at a position x/2 3.30 cm? 5.58 Your response differs from the correct answer by more than 100%. m/s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning