A large number of consecutive IP addresses are available starting at 198.16.0.0. Sup- pose that four organizations, A, B, C, and D, request 4000, 2000, 4000, and 8000 ad- dresses, respectively, and in that order. For each of these, give the first IP address as- signed, the last IP address assigned, and the mask in the w.x.y.z/s notation. A router has just received the following new IP addresses: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21, and 57.6.120.0/21. If all of them use the same outgoing line, can they be aggregated? If so, to what? If not, why not? The set of IP addresses from 29.18.0.0 to 19.18.128.255 has been aggregated to 29.18.0.0/17. However, there is a gap of 1024 unassigned addresses from 29.18.60.0 to 29.18.63.255 that are now suddenly assigned to a host using a different outgoing line. Is it now necessary to split up the aggregate address into its constituent blocks, add the new block to the table, and then see if any reaggregation is possible? If not, what can be done instead? A router has the following (CIDR) entries in its routing table: Address/mask 135.46.56.0/22   135.46.60.0/22.     192.53.40.0/23        default Next hop Interface 0            Interface 1               Router 1                   Router 2 For each of the following IP addresses, what does the router do if a packet with that address arrives? (a) 135.46.63.10 (b) 135.46.57.14 (c) 135.46.52.2 (d) 192.53.40.7 (e) 192.53.56.7

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
  1. A large number of consecutive IP addresses are available starting at 198.16.0.0. Sup- pose that four organizations, A, B, C, and D, request 4000, 2000, 4000, and 8000 ad- dresses, respectively, and in that order. For each of these, give the first IP address as- signed, the last IP address assigned, and the mask in the w.x.y.z/s notation.

  2. A router has just received the following new IP addresses: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21, and 57.6.120.0/21. If all of them use the same outgoing line, can they be aggregated? If so, to what? If not, why not?

  3. The set of IP addresses from 29.18.0.0 to 19.18.128.255 has been aggregated to 29.18.0.0/17. However, there is a gap of 1024 unassigned addresses from 29.18.60.0 to 29.18.63.255 that are now suddenly assigned to a host using a different outgoing line. Is it now necessary to split up the aggregate address into its constituent blocks, add the new block to the table, and then see if any reaggregation is possible? If not, what can be done instead?

  4. A router has the following (CIDR) entries in its routing table:

Address/mask

135.46.56.0/22   135.46.60.0/22.     192.53.40.0/23        default

Next hop

Interface 0            Interface 1               Router 1                   Router 2

For each of the following IP addresses, what does the router do if a packet with that

address arrives?

(a) 135.46.63.10 (b) 135.46.57.14 (c) 135.46.52.2 (d) 192.53.40.7 (e) 192.53.56.7

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 8 images

Blurred answer
Knowledge Booster
Network Transmission Cabling
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education