A point mass is constrained to move on a massless hoop of radius a fixed in a vertical plane that rotates about its vertical symmetry axis with constant angular speed ω. Obtain the Lagrange equations of motion assuming the only external forces arise from gravity. What are the constants of motion? Show that if ω is greater than a critical value ω0, there can be a solution in which the particle remains stationary on the hoop at a point other than at the bottom, but that if ω < ω0, the only stationary point for the particle is at the bottom of the hoop. What is the value of ω0?

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter7: Hamilton's Principle-lagrangian And Hamiltonian Dynamics
Section: Chapter Questions
Problem 7.6P
icon
Related questions
Question

A point mass is constrained to move on a massless hoop of radius a fixed
in a vertical plane that rotates about its vertical symmetry axis with constant
angular speed ω. Obtain the Lagrange equations of motion assuming the only external forces arise from gravity. What are the constants of motion? Show that if ω is greater than a critical value ω0, there can be a solution in which the particle remains stationary on the hoop at a point other than at the
bottom, but that if ω < ω0, the only stationary point for the particle is at
the bottom of the hoop. What is the value of ω0?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning