A round steel alloy bar with a diameter of 19mm and a gauge length of 76mm was subjected to tension, with the results shown in Table. Using a computer spreadsheet program, plot the stress–strain relationship. From the graph, determine the Young’s modulus of the steel alloy and the deformation corresponding to a 37kN load.

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

A round steel alloy bar with a diameter of 19mm and a gauge length of 76mm was subjected to tension, with the results shown in Table.

Using a computer spreadsheet program, plot the stress–strain relationship. From the graph, determine the Young’s modulus of the steel alloy and the deformation corresponding to a 37kN load.

Deformation,
Load, kN
mm
6.
0.0286
18
0.0572
27
0.0859
36
0.1145
45
0.1431
54
0.1718
Transcribed Image Text:Deformation, Load, kN mm 6. 0.0286 18 0.0572 27 0.0859 36 0.1145 45 0.1431 54 0.1718
Expert Solution
Step 1 To determine the stresses for all given loading:

Given data:

Diameter of round steel alloy bar = D = 19 mm

Gauge length = L = 76 mm

Area of steel bar is calculated as:

A=π4d2=π4×192=283.53 mm2

Now, stress in the bar for a load of 9 kN is calculated as:'

σ1=ForceArea=9×1000 N283.53 mm2=31.74 MPa

Stress for loads 18, 27, 36, 45, 54  kN are calculated as follows:

σ2=ForceArea=18×1000 N283.53 mm2=63.48 MPa

σ3=ForceArea=27×1000 N283.53 mm2=95.23 MPa

σ4=ForceArea=36×1000 N283.53 mm2=126.97 MPa

σ5=ForceArea=45×1000 N283.53 mm2=158.71 MPa

σ6=ForceArea=54×1000 N283.53 mm2=190.46 MPa

 

Step 2 To determine the strain corresponding the given load:

Now, the strain is calculated as:

ε=δLwhere, ε=strain in the bar corresponding to the stress           δ= deformation in the bar corresponding to the load (values given in the table)

As per the values of deformation given in the table, the strain corresponding to different deformations is calculated as:

 ε1=0.0286 mm76 mm=3.763×10-4ε2=0.0572 mm76 mm=7.562×10-4ε3=0.0859 mm76 mm=1.130×10-3ε4=0.1145 mm76 mm=1.5066×10-3ε5=0.1431 mm76 mm=1.8828×10-3ε6=0.1718 mm76 mm=2.2505×10-3

 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Pressure and stress
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning